skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bio-Inspired Photonics and Microwave Photonics for Dynamic and Smart RF Systems
Bio-inspired and microwave photonics offer dynamic, natural, and effective solutions to tackle critical challenges in emerging RF systems. This paper discusses several small-scale bio-inspired and dynamic microwave photonic technologies to facilitate the advancement of RF systems.  more » « less
Award ID(s):
1917043
PAR ID:
10226917
Author(s) / Creator(s):
;
Date Published:
Journal Name:
CLEO Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Camouflage is a strategy that animals utilize for concealment in their habitat, making themselves invisible to their predators and preys. In RF systems, steganography or stealth transmission is the camouflage of information – a technology of hiding and transmitting secret messages in public media. Steganography conceals the secret message in publicly available media such that the eavesdropper or attacker will not be able to tell if there is a secret message to look for. Marine hatchetfish have two effective camouflage skills to help them hide from their predators – silvering and counterillumination. Silvering in marine hatchetfish uses its microstructured skin on its sides to achieve destructive interference at colors that could indicate the presence of the fish, while they also emit light at their bottom part to match its color and intensity to its surrounding, making it invisible from below, referred to as counterillumination. In this work, we borrow the two underwater camouflage strategies from marine hatchetfish, mimic them with photonic phenomena, and apply the camouflage strategies for physical stealth transmission of a 200 MBaud/s 16QAM OFDM secret signal at 5 GHz over a 25-km of optical fiber. The proposed bio-inspired steganography strategies successfully hid the secret signal in plain sight in temporal, RF spectral, and optical spectral domains, by blending in using counterillumination and turning invisible using silvering techniques. The stealth signal can only be retrieved with the precise and correct parameter for constructive interference at the secret signal frequency to unmask the silvering. 
    more » « less
  2. The increasing demands to enhance information security in data transmission, providing countermeasures against jamming in military applications, as well as boosting data capacity in mobile and satellite communication, have led to a critical need for high-speed frequency-hopping systems. Conventional electronics-based frequency-hopping systems suffer from low data rate, low hopping speed, and narrow hopping-frequency bandwidth. Unfortunately, those are important aspects to facilitate frequency-hopping in emerging microwave systems. The recent advancement of microwave photonics—the use of light to process microwave signals—provides promising solutions to tackle the challenges faced by electronic frequency-hopping systems. In this paper, the challenges of achieving real-time frequency-hopping systems are examined. The operation principles and results of various microwave photonics-enabled frequency-hopping systems are comprehensively discussed, which have wide hopping-frequency bandwidth and frequency-hopping speed from nanoseconds to tens of picoseconds. Lastly, a bio-inspired jamming-avoidance system that could potentially be used for adaptive frequency-hopping is also introduced. 
    more » « less
  3. Si photonics has made rapid progress in research and commercialization in the past two decades. While it started with electronic–photonic integration on Si to overcome the interconnect bottleneck in data communications, Si photonics has now greatly expanded into optical sensing, light detection and ranging (LiDAR), optical computing, and microwave/RF photonics applications. From an applied physics point of view, this perspective discusses novel materials and integration schemes of active Si photonics devices for a broad range of applications in data communications, spectrally extended complementary metal–oxide–semiconductor (CMOS) image sensing, as well as 3D imaging for LiDAR systems. We also present a brief outlook of future synergy between Si photonic integrated circuits and Si CMOS image sensors toward ultrahigh capacity optical I/O, ultrafast imaging systems, and ultrahigh sensitivity lab-on-chip molecular biosensing. 
    more » « less
  4. The radio frequency spectral shaper is an essential component in emerging multi-service mobile communications, multiband satellite and radar systems, and future 5G/6G radio frequency systems for equalizing spectral unevenness, removing out-of-band noise and interference, and manipulating multi-band signal simultaneously. While it is easy to achieve simple spectral functions using either conventional microwave photonic filters or the optical spectrum to microwave spectra mapping techniques, it is challenging to enable complex spectral shaping functions over tens of GHz bandwidth as well as to achieve point-by-point shaping capability to fulfill the needs in dynamic wireless communications. In this paper, we proposed and demonstrated a novel spectral shaping system, which utilizes a two-section algorithm to automatically decompose the target RF response into a series of Gaussian functions and to reconstruct the desired RF response by microwave photonic techniques. The devised spectral shaping system is capable of manipulating the spectral function in various bands (S, C, and X) simultaneously with step resolution of as fine as tens of MHz. The resolution limitation in optical spectral processing is mitigated using the discrete convolution technique. Over 10 dynamic and independently adjustable spectral control points are experimentally achieved based on the proposed spectral shaper. 
    more » « less
  5. This study investigates the integration of reduced graphene oxide (rGO) films as ground plane in miniaturized RF/mm-wave systems for advanced thermal management applications. Traditional methods such as copper-based heat spreaders struggle to handle the increased power and tighter integration requirements of modern day RF/mmWave packaging. Due to rGO’s exceptionally high in-plane thermal conductivity (∼1100 W/mK), when compared with copper (∼400 W/mK), rGO emerges as a compelling candidate for thermal management in RF electronic packaging. This study investigates the use of rGO to form a ground plane in RF and microwave electronics, evaluating its performance through meticulous transmission line simulations and measurements. Our findings reveal that rGO ground planes exhibit high signal integrity, with an average loss of about 1 dB at 10 GHz and around 2 dB up to 26 GHz, comparable to the performance of traditional copper ground planes. These results indicate that rGO is a promising material for RF and microwave circuits, especially in applications requiring enhanced thermal management and mechanical flexibility. 
    more » « less