skip to main content


Title: Bio-Inspired Photonics and Microwave Photonics for Dynamic and Smart RF Systems
Bio-inspired and microwave photonics offer dynamic, natural, and effective solutions to tackle critical challenges in emerging RF systems. This paper discusses several small-scale bio-inspired and dynamic microwave photonic technologies to facilitate the advancement of RF systems.  more » « less
Award ID(s):
1917043
NSF-PAR ID:
10226917
Author(s) / Creator(s):
;
Date Published:
Journal Name:
CLEO Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The increasing demands to enhance information security in data transmission, providing countermeasures against jamming in military applications, as well as boosting data capacity in mobile and satellite communication, have led to a critical need for high-speed frequency-hopping systems. Conventional electronics-based frequency-hopping systems suffer from low data rate, low hopping speed, and narrow hopping-frequency bandwidth. Unfortunately, those are important aspects to facilitate frequency-hopping in emerging microwave systems. The recent advancement of microwave photonics—the use of light to process microwave signals—provides promising solutions to tackle the challenges faced by electronic frequency-hopping systems. In this paper, the challenges of achieving real-time frequency-hopping systems are examined. The operation principles and results of various microwave photonics-enabled frequency-hopping systems are comprehensively discussed, which have wide hopping-frequency bandwidth and frequency-hopping speed from nanoseconds to tens of picoseconds. Lastly, a bio-inspired jamming-avoidance system that could potentially be used for adaptive frequency-hopping is also introduced. 
    more » « less
  2. The radio frequency spectral shaper is an essential component in emerging multi-service mobile communications, multiband satellite and radar systems, and future 5G/6G radio frequency systems for equalizing spectral unevenness, removing out-of-band noise and interference, and manipulating multi-band signal simultaneously. While it is easy to achieve simple spectral functions using either conventional microwave photonic filters or the optical spectrum to microwave spectra mapping techniques, it is challenging to enable complex spectral shaping functions over tens of GHz bandwidth as well as to achieve point-by-point shaping capability to fulfill the needs in dynamic wireless communications. In this paper, we proposed and demonstrated a novel spectral shaping system, which utilizes a two-section algorithm to automatically decompose the target RF response into a series of Gaussian functions and to reconstruct the desired RF response by microwave photonic techniques. The devised spectral shaping system is capable of manipulating the spectral function in various bands (S, C, and X) simultaneously with step resolution of as fine as tens of MHz. The resolution limitation in optical spectral processing is mitigated using the discrete convolution technique. Over 10 dynamic and independently adjustable spectral control points are experimentally achieved based on the proposed spectral shaper.

     
    more » « less
  3. Microwave communications have witnessed an incipient proliferation of multi-antenna and opportunistic technologies in the wake of an ever-growing demand for spectrum resources, while facing increasingly difficult network management over widespread channel interference and heterogeneous wireless broadcasting. Radio frequency (RF) blind source separation (BSS) is a powerful technique for demixing mixtures of unknown signals with minimal assumptions, but relies on frequency dependent RF electronics and prior knowledge of the target frequency band. We propose photonic BSS with unparalleled frequency agility supported by the tremendous bandwidths of photonic channels and devices. Specifically, our approach adopts an RF photonic front-end to process RF signals at various frequency bands within the same array of integrated microring resonators, and implements a novel two-step photonic BSS pipeline to reconstruct source identities from the reduced dimensional statistics of front-end output. We verify the feasibility and robustness of our approach by performing the first proof-of-concept photonic BSS experiments on mixed-over-the-air RF signals across multiple frequency bands. The proposed technique lays the groundwork for further research in interference cancellation, radio communications, and photonic information processing.

     
    more » « less
  4. Abstract

    To understand the governing mechanisms of bio-inspired swimming has always been challenging due to intense interactions between flexible bodies of natural aquatic species and water around them. Advanced modal decomposition techniques provide us with tools to develop more in-depth understating about these complex dynamical systems. In this paper, we employ proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) techniques to extract energetically strongest spatio-temporal orthonormal components of complex kinematics of a Crevalle jack (Caranx hippos) fish. Then, we present a computational framework for handling fluid–structure interaction related problems in order to investigate their contributions towards the overall dynamics of highly nonlinear systems. We find that the undulating motion of this fish can be described by only two standing-wave like spatially orthonormal modes. Constructing the data set from our numerical simulations for flows over the membranous caudal fin of the jack fish, our modal analyses reveal that only the first few modes receive energy from both the fluid and structure, but the contribution of the structure in the remaining modes is minimal. For the viscous and transitional flow conditions considered here, both spatially and temporally orthonormal modes show strikingly similar coherent flow structures. Our investigations are expected to assist in developing data-driven reduced-order mathematical models to examine the dynamics of bio-inspired swimming robots and develop new and effective control strategies to bring their performance closer to real fish species.

     
    more » « less
  5. Devices that can morph their functions on demand provide a rich yet unexplored paradigm for the next generation of electronic devices and sensors. For example, an antenna that can morph its shape can be used to adapt communication to different wireless standards or improve wireless signal reception. We utilize temperature-sensitive shape memory alloys (SMA) to realize a shape morphing antenna (ShMoA). In the designed architecture, multiple conjoined shape memory alloy sections form the antenna. The shape morphing of this antenna is achieved through temperature control. Different temperature threshold levels are used for programming the shape. Besides its conventional use for RF applications, ShMoA can serve as a multi-level temperature sensor, analogous to thermoreceptors in an insect antenna. ShMoA essentially combines the function of temperature sensing, embedded computing for detection of threshold crossings, and radio frequency readout, all in the single construct of a shape-morphing antenna (ShMoA) without the need for any battery or peripheral electronics. The ShMoA can be employed as bio-inspired wireless temperature sensing antennae on mobile robotic flies, insects, drones and other robots. It can also be deployed as programmable antennas for multi-standard wireless communication. 
    more » « less