skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hysteresis in spreading and retraction of liquid droplets on parallel fiber rails
Wetting and spreading of liquids on fibers occurs in many natural and artificial processes. Unlike on a planar substrate, a droplet attached to one or more fibers can assume several different shapes depending on geometrical parameters such as liquid volume and fiber size and distance. This paper presents lattice Boltzmann simulations of the morphology of liquid droplets on two parallel cylindrical fibers. We investigate the final shapes resulting from spreading of an initially spherical droplet deposited on the fibers and from retraction of an initial liquid column deposited between the fibers. We observe three possible equilibrium configurations: barrel-shaped droplet, droplet bridges, and liquid columns. We determine the complete morphology diagram for varying inter-fiber spacing and liquid volume and find a region of bistability that spans both the column regime and the droplet regime. We further present a simulation protocol that allows to probe the hysteresis of transitions between different shapes. The results provide insights into energies and forces associated with shape transformations of droplets on fibers that can be used to develop fiber-based materials and microfluidic systems for manipulation of liquids at small scale.  more » « less
Award ID(s):
1944942
PAR ID:
10226962
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Soft Matter
ISSN:
1744-683X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Liquid-in-air generation of monodisperse, microscale droplets is an alternative to conventional liquid-in-liquid methods. Previous work has validated the use of a highly inertial gaseous continuous phase in the production of monodisperse droplets in the dripping regime using planar, flow-focusing, PDMS microchannels. The jetting flow regime, characteristic of small droplet size and high generation rates, is studied here in novel microfluidic geometries. The region associated with the jetting regime is characterized using the liquid Weber number (Wel) and the gas Reynolds number (Reg). We explore the effects of microchannel confinement on the development and subsequent breakup of the liquid jet as well as the physical interactions between the jet and continuous gaseous flow. Droplet breakup in the jetting regime is also studied numerically and the influence of different geometrical parameters is investigated. Numerical simulations of the jetting regime include axisymmetric cases where the jet diameter and length are studied. This work represents a vital investigation into the physics of droplet breakup in the jetting regime subject to a confined gaseous co-flow. By understanding the effects that different flow and geometry conditions have on the generation of droplets, the use of this system can be optimized for specific high-demand applications in the aerospace, material, and biological industries. 
    more » « less
  2. With the developments in nanotechnology, nanofibrous materials attract great attention as possible platforms for fluidic engineering. This requires an understanding of droplet interactions with fibers when gravity plays no significant role. This work aims to classify all possible axisymmetric configurations of droplets on fibers. The contact angle that the drop makes with the fiber surface is allowed to change from 0° to 180°. Nodoidal apple-like droplets with inverted menisci cusped toward the droplet center and unduloidal droplets with menisci cusped away from the droplet center were introduced and fully analyzed. The existing theory describing axisymmetric droplets on fibers is significantly enriched introducing new morphological configurations of droplets. It is experimentally shown that the barreled droplets could be formed on non-wettable fibers offering contact angles greater than 90°. The theory was quantitatively confirmed with hemispherical droplets formed at the end of a capillary tube and satisfying all the boundary conditions of the model. It is expected that the developed theory could be used for the design of nanofiber-based fluidic devices and for drop-on-demand technologies. 
    more » « less
  3. Macromolecules can phase separate to form liquid condensates, which are emerging as critical compartments in fields as diverse as intracellular organization and soft materials design. A myriad of macromolecules, including the protein FUS, form condensates which behave as isotropic liquids. Here, we investigate the influence of filament dopants on the material properties of protein liquids. We find that the short, biopolymer filaments of actin spontaneously partition into FUS droplets to form composite liquid droplets. As the concentration of the filament dopants increases, the coalescence time decreases, indicating that the dopants control viscosity relative to surface tension. The droplet shape is tunable and ranges from spherical to tactoid as the filament length or concentration is increased. We find that the tactoids are well described by a model of a quasi bipolar liquid crystal droplet, where nematic order from the anisotropic actin filaments competes with isotropic interfacial energy from the FUS, controlling droplet shape in a size-dependent manner. Our results demonstrate a versatile approach to construct tunable, anisotropic macromolecular liquids. 
    more » « less
  4. This experimental work builds on our previous studies on the post-impact characteristics of drops striking three-dimensional-printed fiber arrays by investigating the highly transient characteristics of impact. We measure temporal changes in drop penetration depth, lateral spreading, and drop dome height above the fiber array as the drop impacts. Liquid penetration of vertical fibers may be divided into three sequential periods with linearly approximated rates of penetration: (i) an inertial regime, where penetration dynamics are governed by inertia; (ii) a transitional regime exhibiting inertial and capillary action; and (iii) a capillary regime characterized purely by downward wicking. Horizontal fibers exhibit only the inertial and transitional stages, with wicking only observed horizontally along the direction of fibers. In horizontal hydrophilic fiber arrays, the time duration to reach the maximum lateral deformation of the drop is proportional to We1/4, as observed in drops impacting solid surfaces. There exists a critical Weber number below which the drop shows no radial deformation, and the critical value increases with decreasing fiber density. At large Weber numbers, drops splash. In contrast, vertical fibers restrict the lateral spreading of the drop, thereby suppressing a splash for all tested drop velocities, even those exceeding 5 m/s. 
    more » « less
  5. This work focuses on fabrication of multi-hollow polyimide gel and aerogel particles from a surfactant-free oil-in-oil emulsion system using a microfluidic droplet generator operating under dripping mode. The multi-hollow gel and aerogel particles have strong potential in thermal insulation. Under jetting and tip-streaming regime of microfluidic flows, droplets are generated with no occluded liquid phase. The present study investigates a means of designing polyimide gel particles with plurality of internal liquid droplets by strategically manipulating the flow rates of the continuous and dispersed phase liquids through the microfluidic droplet generator. The multi-hollow polyimide aerogel particles obtained after supercritical drying of the gel particles present mesopores, high BET surface area, and excellent prospect for thermal insulation. 
    more » « less