skip to main content


Title: Rhodium(III)‐Catalyzed C−H Bond Functionalization of 2‐Pyridones with Alkynes: Switchable Alkenylation, Alkenylation/Directing Group Migration and Rollover Annulation
Abstract

Cp*Rh(III)‐catalyzed chelation‐assisted direct C−H bond functionalization of 1‐(2‐pyridyl)‐2‐pyridones with internal alkynes that can be controlled to give three different products in good yields has been realized. Depending on the reaction conditions, solvents and additives, the reaction pathway can be switched between alkenylation, alkenylation/directing group migration and rollover annulation. These reaction manifolds allow divergent access to a variety of valuable C6‐alkenylated 1‐(2‐pyridyl)‐2‐pyridones, (Z)‐6‐(1,2‐diaryl‐2‐(pyridin‐2‐yl)vinyl)pyridin‐2(1H)‐ones and 10H‐pyrido[1,2‐a][1,8]naphthyridin‐10‐ones from the same starting materials. These protocols exhibit excellent regio‐ and stereoselectivity, broad substrate scope, and good tolerance of functional groups. A combination of experimental and computational approaches have been employed to uncover the key mechanistic features of these reactions.

 
more » « less
Award ID(s):
1902509
NSF-PAR ID:
10226994
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
27
Issue:
34
ISSN:
0947-6539
Page Range / eLocation ID:
p. 8811-8821
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A versatile Rh( i )-catalyzed C6-selective decarbonylative C–H alkenylation of 2-pyridones with readily available, and inexpensive alkenyl carboxylic acids has been developed. This directed dehydrogenative cross-coupling reaction affords 6-alkenylated 2-pyridones that would otherwise be difficult to access using conventional C–H functionalization protocols. The reaction occurs with high efficiency and is tolerant of a broad range of functional groups. A wide scope of alkenyl carboxylic acids, including challenging conjugated polyene carboxylic acids, are amenable to this transformation and no addition of external oxidant is required. Mechanistic studies revealed that (1) Boc 2 O acts as the activator for the in situ transformation of the carboxylic acids into anhydrides before oxidative addition by the Rh catalyst, (2) a decarbonylation step is involved in the catalytic cycle, and (3) the C–H bond cleavage is likely the turnover-limiting step. 
    more » « less
  2. Abstract

    Ketone functionalization is a cornerstone of organic synthesis. Herein, we describe the development of an intermolecular C−H alkenylation of enamides with the feedstock chemical vinyl acetate to access diverse functionalized ketones. Enamides derived from various cyclic and acyclic ketones reacted efficiently, and a number of sensitive functional groups were tolerated. In this iridium‐catalyzed transformation, two structurally and electronically similar alkenes—enamide and vinyl acetate—underwent selective cross‐coupling through C−H activation. No reaction partner was used in large excess. The reaction is also pH‐ and redox‐neutral with HOAc as the only stoichiometric by‐product. Detailed experimental and computational studies revealed a reaction mechanism involving 1,2‐Ir‐C migratory insertion followed bysyn‐β‐acetoxy elimination, which is different from that of previous vinyl acetate mediated C−H activation reactions. Finally, the alkenylation product can serve as a versatile intermediate to deliver a variety of structurally modified ketones.

     
    more » « less
  3. Abstract

    Ketone functionalization is a cornerstone of organic synthesis. Herein, we describe the development of an intermolecular C−H alkenylation of enamides with the feedstock chemical vinyl acetate to access diverse functionalized ketones. Enamides derived from various cyclic and acyclic ketones reacted efficiently, and a number of sensitive functional groups were tolerated. In this iridium‐catalyzed transformation, two structurally and electronically similar alkenes—enamide and vinyl acetate—underwent selective cross‐coupling through C−H activation. No reaction partner was used in large excess. The reaction is also pH‐ and redox‐neutral with HOAc as the only stoichiometric by‐product. Detailed experimental and computational studies revealed a reaction mechanism involving 1,2‐Ir‐C migratory insertion followed bysyn‐β‐acetoxy elimination, which is different from that of previous vinyl acetate mediated C−H activation reactions. Finally, the alkenylation product can serve as a versatile intermediate to deliver a variety of structurally modified ketones.

     
    more » « less
  4. Abstract

    A general and versatile alkenylation protocol for the synthesis of vinyl‐azaarylmethylamines has been developed. Enabled by a palladium/NIXANTPHOS catalyst, this protocol provides efficient access to a large variety ofN‐heterocycles bearing allylic amines in up to 98% yield. A wide variety of azaarylmethylamines bearing 2‐pyridylmethyl, 4‐pyridylmethyl, 2‐(aminomethyl)quinoline aryl motifs and diverse 5 to 7 membered cyclic amines were well tolerated. A gram scale reaction was also used to demonstrate the scalability. This method can be readily adopted by medicinal chemists to prepare valuable scaffolds that were previously difficult to access.

    magnified image

     
    more » « less
  5. Abstract

    This work focuses on the synthesis of supported Rh materials and study of their efficacy as pre‐catalysts for the oxidative alkenylation of arenes. Rhodium particles supported on silica (Rh/SiO2; ∼3.6 wt% Rh) and on nitrogen‐doped carbon (Rh/NC; ∼1.0 wt% Rh) are synthesized and tested. Heating mixtures of Rh/SiO2or Rh/NC with benzene and ethylene or α‐olefins and CuX2{X=OPiv (trimethylacetate) or OHex (2‐ethyl hexanoate)} to 150 °C results in the production of alkenyl arenes. When using Rh/SiO2or Rh/NC as catalyst precursor, the conversion of benzene and propylene or toluene and 1‐pentene yields a ratio of anti‐Markovnikov to Markovnikov products that is nearly identical to the same ratios as the molecular catalyst precursor [Rh(μ‐OAc)(η2‐C2H4)2]2. These results and other observations are consistent with the formation of active catalysts by leaching of soluble Rh from the supported Rh materials.

     
    more » « less