skip to main content


Search for: All records

Award ID contains: 1902509

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A novel, selective and high‐yielding palladium‐catalyzed carbonylative arylation of a variety of weakly acidic (pKa25–35 in DMSO) benzylic and heterobenzylic C(sp3)−H bonds with aryl bromides has been achieved. This system is applicable to a range of pro‐nucleophiles for access to sterically and electronically diverse α‐aryl or α,α‐diaryl ketones, which are ubiquitous substructures in biologically active compounds. The Josiphos SL‐J001‐1‐based palladium catalyst was identified as the most efficient and selective, enabling carbonylative arylation with aryl bromides under 1 atm CO to provide the ketone products without the formation of direct coupling byproducts. Additionally, (Josiphos)Pd(CO)2was identified as the catalyst resting state. A kinetic study suggests that the oxidative addition of aryl bromides is the turnover‐limiting step. Key catalytic intermediates were also isolated.

     
    more » « less
  2. Abstract

    The use of nitroarenes as amino sources in synthesis is challenging. Herein is reported an unusual, straightforward, and transition metal-free method for the net [3 + 2]-cycloaddition reaction of 2-azaallyl anions with nitroarenes. The products of this reaction are diverse 2,5-dihydro-1,2,4-oxadiazoles (>40 examples, up to 95% yield). This method does not require an external reductant to reduce nitroarenes, nor does it employ nitrosoarenes, which are often used in N–O cycloadditions. Instead, it is proposed that the 2-azaallyl anions, which behave as super electron donors (SEDs), deliver an electron to the nitroarene to generate a nitroarene radical anion. A downstream 2-azaallyl radical coupling with a newly formed nitrosoarene is followed by ring closure to afford the observed products. This proposed reaction pathway is supported by computational studies and experimental evidence. Overall, this method uses readily available materials, is green, and exhibits a broad scope.

     
    more » « less
  3. Abstract

    Nonsteroidal anti-inflammatory drug derivatives (NSAIDs) are an important class of medications. Here we show a visible-light-promoted photoredox/nickel catalyzed approach to construct enantioenriched NSAIDs via a three-component alkyl arylation of acrylates. This reductive cross-electrophile coupling avoids preformed organometallic reagents and replaces stoichiometric metal reductants by an organic reductant (Hantzsch ester). A broad range of functional groups are well-tolerated under mild conditions with high enantioselectivities (up to 93% ee) and good yields (up to 90%). A study of the reaction mechanism, as well as literature precedence, enabled a working reaction mechanism to be presented. Key steps include a reduction of the alkyl bromide to the radical, Giese addition of the alkyl radical to the acrylate and capture of the α-carbonyl radical by the enantioenriched nickel catalyst. Reductive elimination from the proposed Ni(III) intermediate generates the product and forms Ni(I).

     
    more » « less
  4. Abstract

    The first RhI‐catalyzed, directed decarbonylative C2−H alkenylation of imidazoles with readily available alkenyl carboxylic acids is reported. The reaction proceeds in a highly regio‐ and stereoselective manner, providing efficient access to C2‐alkenylated imidazoles that are generally inaccessible by known C−H alkenylation methods. This transformation accommodates a wide range of alkenyl carboxylic acids, including challenging conjugated polyene carboxylic acids, and diversely decorated imidazoles with high functional group compatibility. The presence of a removable pyrimidine directing group and the use of a bidentate phosphine ligand are pivotal to the success of the catalytic reaction. This process is also suitable for benzimidazoles. Importantly, the scalability and diversification of the products highlight the potential of this protocol in practical applications. Detailed experimental and computational studies provide important insights into the underlying reaction mechanism.

     
    more » « less
  5. Abstract

    BulkyN,N’‐bidentate ligands can furnish catalysts with enhanced catalytic activity compared to commercially available ligands. Straightforward methods to effectively synthesize a broad range of these ligands, however, are uncommon. In this work, a simple and efficient method is developed for the synthesis of bulkyN,N’‐bidentate ligands, including 2,2’‐bipyridines and enantioenriched pyridine‐oxazolines. The Pd/NIXANTPHOS catalyst system enabled synthesis of a series of bulky 2,2’‐bipyridine‐based ligands and (S)‐pyridine oxazoline‐based enantioenriched ligands with good to excellent yields. The ligands have been benchmarked in the aminofluorination of styrene.

    magnified image

     
    more » « less
  6. Abstract

    A Rh(I)‐catalyzed C6‐selective C−H arylation of 2‐pyridones with inexpensive, readily available, safe and structurally diverse aryl carboxylic acids with the aid of a pyridine directing group is developed. This decarbonylative arylation protocol features an easy‐to‐handle catalytic system, and is amenable to diversely substituted 2‐pyridones and aryl carboxylic acids. It allows access to a wide range of C6‐arylated 2‐pyridones, including those that are difficult to prepare using conventional C−H arylation processes. The method tolerates various electron‐neutral, electron‐rich and electron‐deficient functional groups, and affords the products in 41–91% yields.

    magnified image

     
    more » « less
  7. Abstract

    Direct oxidative C(sp)−H/C(sp3)−H cross‐coupling offers an ideal and environmentally benign protocol for C(sp)−C(sp3) bond formations. As such, reactivity and site‐selectivity with respect to C(sp3)−H bond cleavage have remained a persistent challenge. Herein is reported a simple method for iron‐catalyzed/silver‐mediated tertiary alkylation of terminal alkynes with readily available and versatile 1,3‐dicarbonyl compounds. The reaction is suitable for an array of substrates and proceeds in a highly selective manner even employing alkanes containing other tertiary, benzylic, and C(sp3)−H bonds alpha to heteroatoms. Elaboration of the products enables the synthesis of a series of versatile building blocks. Control experiments implicate the in situ generation of a tertiary carbon‐centered radical species.

     
    more » « less
  8. Abstract

    Cp*Rh(III)‐catalyzed chelation‐assisted direct C−H bond functionalization of 1‐(2‐pyridyl)‐2‐pyridones with internal alkynes that can be controlled to give three different products in good yields has been realized. Depending on the reaction conditions, solvents and additives, the reaction pathway can be switched between alkenylation, alkenylation/directing group migration and rollover annulation. These reaction manifolds allow divergent access to a variety of valuable C6‐alkenylated 1‐(2‐pyridyl)‐2‐pyridones, (Z)‐6‐(1,2‐diaryl‐2‐(pyridin‐2‐yl)vinyl)pyridin‐2(1H)‐ones and 10H‐pyrido[1,2‐a][1,8]naphthyridin‐10‐ones from the same starting materials. These protocols exhibit excellent regio‐ and stereoselectivity, broad substrate scope, and good tolerance of functional groups. A combination of experimental and computational approaches have been employed to uncover the key mechanistic features of these reactions.

     
    more » « less
  9. Abstract

    In the last 20 years, efficient transition metal catalysts for the α‐arylation of enolates have been introduced. Despite the popularity and utility of these reactions, there remains room for improvement (reduced costs, elimination of transition metals and specialized ligands). Herein is reported a general, scalable and green method for aroylation of simple diarylmethane pronucleophiles through direct acyl C−N cleavage ofN‐Bn−N‐Boc arylamides andN‐acylpyrroles under transition metal‐free conditions. Importantly, a 1 : 1 ratio of the amide to the pronucleophile is employed. Unlike use of Weinreb amides, this method avoids preformed organometallics (organolithium and Grignard reagents) and does not employ cryogenic temperatures, which are difficult and costly to achieve on scale. The operationally simple protocol provides straightforward access to a variety of sterically and electronically diverse 1,2,2‐triarylethanones, a group of compounds with high‐value in medicinal chemistry.

    magnified image

     
    more » « less
  10. Abstract

    An umpolung 1,4‐addition of aryl iodides to enals promoted by cooperative (terpy)Pd/NHC catalysis was developed that generates various bioactive β,β‐diaryl propanoate derivatives. This system is not only the first reported palladium‐catalyzed arylation of NHC‐bound homoenolates but also expands the scope of NHC‐induced umpolung transformations. A diverse array of functional groups such as esters, nitriles, alcohols, and heterocycles are tolerated under the mild conditions. This method also circumvents the use of moisture‐sensitive organometallic reagents.

     
    more » « less