skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Selective Triazenation Reaction (STaR) of Secondary Amines for Tagging Monomethyl Lysine Post‐Translational Modifications
Abstract Lysine monomethylation (Kme) is an impactful post‐translational modification (PTM) responsible for regulating biological processes and implicated in diseases, thus there is great interest in identifying these methylation marks globally. However, the progress in this area has been challenging because the addition of a small methyl group on lysine leads to negligible change in the bulk, charge, and hydrophobicity. Herein, we report an empowering chemical technology selective triazenation reaction, which we term “STaR”, of secondary amines using arene diazonium salts to achieve highly selective, rapid, and robust tagging of Kme peptides from a complex mixture under biocompatible conditions. Although the resulting triazene‐linkage with Kme is stable, we highlight the efficient decoupling of the triazene‐conjugate to afford unmodified starting components under mild conditions when desired. Our work establishes a unique chemoselective, traceless bioconjugation strategy for the selective enrichment of Kme PTMs.  more » « less
Award ID(s):
2103515
PAR ID:
10227190
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
133
Issue:
13
ISSN:
0044-8249
Page Range / eLocation ID:
p. 7420-7428
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Selective modification of proteins enables synthesis of antibody-drug conjugates, cellular drug delivery and construction of new materials. Many groups have developed methods for selective N-terminal modification without affecting the side chain of lysine by judicious pH control. This is due to lower basicity of the N-terminus relative to lysine side chains. But none of the methods are capable of selective modification of secondary amines or N-terminal proline, which has similar basicity as lysine. Here, we report a secondary amine selective Petasis (SASP) reaction for selective bioconjugation at N-terminal proline. We exploited the ability of secondary amines to form highly electrophilic iminium ions with aldehydes, which rapidly reacted with nucleophilic organoboronates, resulting in robust labeling of N-terminal proline under biocompatible conditions. This is the first time the Petasis reaction has been utilized for selective modification of secondary amines on completely unprotected peptides and proteins under physiological conditions. Peptide screening results showed that the reaction is highly selective for N-terminal proline. There are no other chemical methods reported in literature that are selective for N-terminal proline in both peptides and proteins. This is a multicomponent reaction leading to the synthesis of doubly functionalized bioconjugates in one step that can be difficult to achieve using other methods. The key advantage of the SASP reaction includes its high chemoselective and stereoselective (>99% de) nature, and it affords dual labeled proteins in one pot. The broad utility of this bioconjugation is highlighted for a variety of peptides and proteins, including aldolase and creatine kinase. 
    more » « less
  2. Abstract Inspired by the enzyme lysyl oxidase, which selectively converts the side chain of lysine into allysine, an aldehyde‐containing post‐translational modification, we report herein the first chemical method for the synthesis of allysine by selective oxidation of dimethyl lysine. This approach is highly chemoselective for dimethyl lysine on proteins. We highlight the utility of this biomimetic approach for generating aldehydes in a variety of pharmaceutically active linear and cyclic peptides at a late stage for their diversification with various affinity and fluorescent tags. Notably, we utilized this approach for generating small‐molecule aldehydes from the corresponding tertiary amines. We further demonstrated the potential of this approach in generating cellular models for studying allysine‐associated diseases. 
    more » « less
  3. Abstract Mild strategies for the selective modification of peptides and proteins are in demand for applications in therapeutic peptide and protein discovery, and in the study of fundamental biomolecular processes. Herein, we describe the development of an electrochemical selenoetherification (e‐SE) platform for the efficient site‐selective functionalization of polypeptides. This methodology utilizes the unique reactivity of the 21st amino acid, selenocysteine, to effect formation of valuable bioconjugates through stable selenoether linkages under mild electrochemical conditions. The power of e‐SE is highlighted through late‐stage C‐terminal modification of the FDA‐approved cancer drug leuprolide and assembly of a library of anti‐HER2 affibody conjugates bearing complex cargoes. Following assembly by e‐SE, the utility of functionalized affibodies for in vitro imaging and targeting of HER2 positive breast and lung cancer cell lines is also demonstrated. 
    more » « less
  4. Abstract Plants continuously remodel and degrade their organelles due to damage from their metabolic activities and environmental stressors, as well as an integral part of their cell differentiation programs. Whereas certain organelles use local hydrolytic enzymes for limited remodeling, most of the pathways that control the partial or complete dismantling of organelles rely on vacuolar degradation. Specifically, selective autophagic pathways play a crucial role in recognizing and sorting plant organelle cargo for vacuolar clearance, especially under cellular stress conditions induced by factors like heat, drought, and damaging light. In these short reviews, we discuss the mechanisms that control the vacuolar degradation of chloroplasts, mitochondria, endoplasmic reticulum, Golgi, and peroxisomes, with an emphasis on autophagy, recently discovered selective autophagy receptors for plant organelles, and crosstalk with other catabolic pathways. 
    more » « less
  5. Abstract Gliomas are one of the most common and lethal brain tumors among adults. One process that contributes to glioma progression and recurrence is the epithelial to mesenchymal transition (EMT). EMT is regulated by a set of defined transcription factors which tightly regulate this process, among them is the basic helix-loop-helix family member, TWIST1. Here we show that TWIST1 is methylated on lysine-33 at chromatin by SETD6, a methyltransferase with expression levels correlating with poor survival in glioma patients. RNA-seq analysis in U251 glioma cells suggested that both SETD6 and TWIST1 regulate cell adhesion and migration processes. We further show that TWIST1 methylation attenuates the expression of the long-non-coding RNA, LINC-PINT, thereby promoting EMT in glioma. Mechanistically, TWIST1 methylation represses the transcription of LINC-PINT by increasing the occupancy of EZH2 and the catalysis of the repressive H3K27me3 mark at the LINC-PINT locus. Under un-methylated conditions, TWIST1 dissociates from the LINC-PINT locus, allowing the expression of LINC-PINT which leads to increased cell adhesion and decreased cell migration. Together, our findings unravel a new mechanistic dimension for selective expression of LINC-PINT mediated by TWIST1 methylation. 
    more » « less