skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A revision of the minor species group in the millipede genus Nannaria Chamberlin, 1918 (Diplopoda, Polydesmida, Xystodesmidae)
Millipedes in the family Xystodesmidae (Polydesmida) are often referred to as “colorful, flat-backed millipedes” for their bright aposematic coloration and tendency to form Müllerian mimicry rings in the Appalachian region. However, there are many species of Xystodesmidae that do not display colorful warning patterns, and instead have more cryptic appearances. Perhaps for this reason, groups such as the genus Nannaria have remained understudied, despite containing a large number of undescribed species. Before his death in 2012, R. L. Hoffman worked on a revision of the genus Nannaria , and synthesized material and drawings since 1949. Here the work is continued, inferring a molecular phylogeny of the Nannariini ( Nannaria + Oenomaea pulchella ), and revealing two clades within the genus. One clade is named the minor species group, and the second is the wilsoni species group. This revision, using a molecular phylogenetic framework, is the basis for descriptions of 35 new species in the minor species group. A multi-gene molecular phylogeny is used to make taxonomic changes in the taxon. Eleven putative species of Nannaria are also illustrated and discussed. Additionally, detailed collection, natural history and habitat notes, distribution maps, and a key to species of the Nannaria minor species group are provided. These items are synthesized as a basis for a revision of the genus, which hopefully will aid conservation and evolutionary investigations of this cryptic and understudied group.  more » « less
Award ID(s):
1655635
PAR ID:
10227212
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ZooKeys
Volume:
1030
ISSN:
1313-2989
Page Range / eLocation ID:
1 to 180
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Although many new species of the millipede genus Nannaria Chamberlin, 1918 have been known from museum collections for over half a century, a systematic revision has not been undertaken until recently. There are two species groups in the genus: the minor species group and the wilsoni species group. In this study, the wilsoni species group was investigated. Specimens were collected from throughout its distribution in the Appalachian Mountains of the eastern United States and used for a multi-gene molecular phylogeny. The phylogenetic tree recovered Nannaria and the two species groups as monophyletic, with Oenomaea pulchella as its sister group. Seventeen new species were described, bringing the composition of the wilsoni species group to 24 species, more than tripling its known diversity, and increasing the total number of described Nannaria species to 78. The genus now has the greatest number of species in the family Xystodesmidae. Museum holdings of Nannaria were catalogued, and a total of 1,835 records used to produce a distribution map of the species group. Live photographs, illustrations of diagnostic characters, ecological notes, and conservation statuses are given. The wilsoni species group is restricted to the Appalachian region, unlike the widely-distributed minor species group (known throughout eastern North America), and has a distinct gap in its distribution in northeastern Tennessee and adjacent northwestern North Carolina. The wilsoni species group seems to be adapted to mesic microhabitats in middle to high elevation forests in eastern North America. New species are expected to be discovered in the southern Appalachian Mountains. 
    more » « less
  2. We revise the millipede genus Apheloria Chamberlin, 1921—a colorful and often encountered group of millipedes in eastern North America. With molecular phylogenetics, we estimate the evolutionary history of the genus, and use it in combination with morphology to understand species diversity. We describe a new species, Apheloria uwharrie sp. nov. from North and South Carolina, synonymize Apheloria tigana Chamberlin, 1939 syn. nov. with Apheloria virginiensis (Drury, 1770), and remove Apheloria luminosa (Kenyon, 1893) syn. nov. from the genus and place it in synonymy with Pleuroloma flavipes Rafinesque, 1820. Currently there are six species of Apheloria: Apheloria corrugata (Wood, 1864) stat. nov.; Apheloria montana (Bollman, 1887); Apheloria polychroma Marek, Means & Hennen, 2018; Apheloria uwharrie sp. nov.; Apheloria virginiensis (Drury, 1770); and Apheloria whiteheadi (Shelley, 1986). 
    more » « less
  3. For the past several centuries, millipede taxonomists have used the morphology of male copulatory structures (modified legs called gonopods), which are strongly variable and suggestive of species-level differences, as a source to understand taxon relationships. Millipedes in the family Xystodesmidae are blind, dispersal-limited and have narrow habitat requirements. Therefore, geographical proximity may instead be a better predictor of evolutionary relationship than morphology, especially since gonopodal anatomy is extremely divergent and similarities may be masked by evolutionary convergence. Here we provide a phylogenetics-based test of the power of morphological versus geographical character sets for resolving phylogenetic relationships in xystodesmid millipedes. Molecular data from 90 species-group taxa in the family were included in a six-gene phylogenetic analysis to provide the basis for comparing trees generated from these alternative character sets. The molecular phylogeny was compared to topologies representing three hypotheses: (1) a prior classification formulated using morphological and geographical data, (2) hierarchical groupings derived from Euclidean geographical distance, and (3) one based solely on morphological data. Euclidean geographical distance was not found to be a better predictor of evolutionary relationship than the prior classification, the latter of which was the most similar to the molecular topology. However, all three of the alternative topologies were highly divergent (Bayes factor >10) from the molecular topology, with the tree inferred exclusively from morphology being the most divergent. The results of this analysis show that a high degree of morphological convergence from substantial gonopod shape divergence generated spurious phylogenetic relationships. These results indicate the impact that a high degree of morphological homoplasy may have had on prior treatments of the family. Using the results of our phylogenetic analysis, we make several changes to the classification of the family, including transferring the rare state-threatened species Sigmoria whiteheadi Shelley, 1986 to the genus Apheloria Chamberlin, 1921—a relationship not readily apparent based on morphology alone. We show that while gonopod differences are a premier source of taxonomic characters to diagnose species pairwise, the traits should be viewed critically as taxonomic features uniting higher levels. 
    more » « less
  4. The millipede genus Cherokia Chamberlin, 1949 is a monospecific taxon, with the type species Cherokia georgiana (Bollman, 1889). The last revision of the genus was made by Hoffman (1960) where he established three subspecies. Here we used molecular phylogenetics to assess the genus and evaluate whether it is a monophyletic group, and if the subspecies are each monophyletic. We included material from literature records and three natural history collections. Newly collected samples were obtained through a citizen science project. Morphological characters underlying subspecies groups—the shape of the paranota, body size, and coloration—were evaluated. A molecular phylogeny of the genus was estimated based on DNA sequences for seven gene loci, and a species delimitation analysis was used to evaluate the status of the subspecies. The documented geographical range of Cherokia in the United States was expanded to include a newly reported state record (Virginia) and about 160 new localities compared to the previously known range. Morphological characters, which included the shape of the paranota and body size that had been historically used to establish subspecies, showed clinal variation with a direct relationship with geographical distribution and elevation, but not with phylogeny. Coloration was highly variable and did not accord with geography or phylogeny. The phylogeny recovered Cherokia as a monophyletic lineage, and the species delimitation test supported the existence of a single species. The subspecies Cherokia georgiana ducilla (Chamberlin, 1939) and Cherokia georgiana latassa Hoffman, 1960 have been synonymized with Cherokia georgiana . The molecular and morphological evidence showed that Cherokia is a monospecific genus with the sole species, Cherokia georgiana , being geographically widespread and highly variable in its morphology. 
    more » « less
  5. The ambush bugs (Heteroptera: Reduviidae: Phymatinae) are a diverse clade of predators known for their cryptic hunting behavior and morphologically diverse raptorial forelegs. Despite their striking appearance, role as pollinator predators, and intriguing biogeographic distribution, phylogenetic relationships within Phymatinae are largely unknown and the evolutionary history of the subfamily has remained in the dark. We here utilize the most extensive molecular phylogeny of ambush bugs to date, generated from a 3328 base pair molecular dataset, to refine our understanding of phymatine relationships, estimate dates of divergence (BEAST 2), and uncover historical biogeographic patterns (S-DIVA and DEC). This taxon set (39 species of Phymatinae and six outgroups) allowed reevaluation of the proposed sister group of Phymatinae and tribal-level relationships within the group, and for the first time proposes species-level relationships within Phymata Latreille, the largest genus of ambush bugs (∼109 spp.). Available evidence suggests that Phymata originated in the Neotropical region, with subsequent dispersals to the Nearctic and Palearctic regions. This study provides a framework for future research investigating the evolutionary history of ambush bugs, as well as ecological and microevolutionary investigations. 
    more » « less