skip to main content


Title: Charge stabilization via electron exchange: excited charge separation in symmetric, central triphenylamine derived, dimethylaminophenyl– tetracyanobutadiene donor–acceptor conjugates
Photoinduced charge separation in donor-acceptor conjugates play a pivotal role in technology breakthroughs, especially in the areas of efficient conversion of solar energy into electrical energy and fuels. Extending the lifetime of the charge separated species is a necessity for their practical utilization, and this is often achieved by following the mechanism of natural photosynthesis where the process of electron/hole migration occurs distantly separating the radical ion-pairs. Here, we hypothesize and demonstrate a new mechanism to stabilize the charge separated states via the process of electron exchange among the different acceptor entities in multimodular donor-acceptor conjugates. For this, star-shaped, central triphenylamine derived, dimethylamine-tetracyanobutadiene conjugates have been newly designed and characterized. Electron exchange was witnessed upon electroreduction in conjugates having multiple numbers of electron acceptors. Using ultrafast spectroscopy, occurrence of excited state charge separation, and the effect of electron exchange in prolonging the lifetime of charge separated states in the conjugates having multiple acceptors has been successfully demonstrated. This work constitutes the first example of stabilizing charge-separated states via the process of electron exchange.  more » « less
Award ID(s):
2000988
NSF-PAR ID:
10227271
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemical science
Volume:
12
ISSN:
1478-6524
Page Range / eLocation ID:
1109-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The significance of multiple number of donor-acceptor entities on a central electron donor in a star-shaped molecular system in improving light energy harvesting ability is reported. For this, donor-acceptor-donor type conjugates comprised up to three entities ferrocenyl (Fc)-diketopyrrolopyrrole (DPP) onto a central triphenylamine (TPA), (4-6) by the Pd-catalyzed Sonogashira cross–coupling reactions have been newly synthesized and characterized. Donor-acceptor conjugates possessing diketopyrrolopyrrole (1 to 3 entities) onto the central triphenylamine, (1-3) served as reference dyads while monomeric DPP and Fc-DPP served as control compounds. Both DPP and Fc-DPP carrying conjugates exhibited red-shifted absorption compared to their respective control compounds revealing existence of ground state interactions. Furthermore, DPP fluorescence in 4-6 was found to be quantitatively quenched while for 1-3, this property varied between 73-65% suggesting occurrence moderate amounts of excited state events. The electrochemical investigations exhibited an additional low potential oxidation in the case of Fc-DPP-TPA based derivatives (4-6) owing to the presence of ferrocene unit(s). This was in addition to DPP and TPA redox peaks. Using spectral, electrochemical and computational studies, Gibbs free-energy calculations were performed to visualize excited state charge separation (GCS) in these donor-acceptor conjugates as a function of different number of Fc-DPP entities. Formation of Fc+-DPP•--TPA charge separated states (CSS) in the case of 4-6 was evident. Using spectroelectrochemical studies, spectrum of CSS was deduced. Finally, femtosecond transient absorption spectral studies were performed to gather information on excited state charge separation. Increasing the number of Fc-DPP entities in 4-6 improved charge separation rates. Surprisingly, lifetime of the charge separated state, Fc+-DPP•--TPA was found to persist longer with an increase in the number of Fc-DPP entities in 4-6 as compared to Fc-DPP-control and simple DPP derived donor-acceptor conjugates in literature. This unprecedented result has been attributed to subtle changes in GCS and GCR and the associated electron coupling between different entities. 
    more » « less
  2. Abstract

    TheC3‐symmetric star‐shaped phenothiazene‐substituted truxene1was reacted with the electron acceptors tetracyanoethylene (TCNE) and 7,7,8,8‐tetracyanoquinodimethane (TCNQ). The cycloaddition–retroelectrocyclization reaction yields the conjugates2and3. A combination of spectral, electrochemical, and photophysical investigations of2and3reveals that the functionalization of the triple bond has a pronounced effect on their ground and excited‐state interactions. Specifically, the existence of strong ground‐state interactions between phenothiazine and the electron‐accepting groups results in charge‐transfer states, while subsequent ultrafast charge separation yields electron transfer products. This is unprecedented not only in phenothiazine chemistry but also in tetracyanobutadiene‐ and dicyanoquinodimethane‐derived donor–acceptor conjugates. Additionally, by manipulating spectroelectrochemical data, a spectrum of the charge‐separated species is construed for the first time, and shown to be highly useful in interpreting the rather complex transient spectra.

     
    more » « less
  3. Abstract

    TheC3‐symmetric star‐shaped phenothiazene‐substituted truxene1was reacted with the electron acceptors tetracyanoethylene (TCNE) and 7,7,8,8‐tetracyanoquinodimethane (TCNQ). The cycloaddition–retroelectrocyclization reaction yields the conjugates2and3. A combination of spectral, electrochemical, and photophysical investigations of2and3reveals that the functionalization of the triple bond has a pronounced effect on their ground and excited‐state interactions. Specifically, the existence of strong ground‐state interactions between phenothiazine and the electron‐accepting groups results in charge‐transfer states, while subsequent ultrafast charge separation yields electron transfer products. This is unprecedented not only in phenothiazine chemistry but also in tetracyanobutadiene‐ and dicyanoquinodimethane‐derived donor–acceptor conjugates. Additionally, by manipulating spectroelectrochemical data, a spectrum of the charge‐separated species is construed for the first time, and shown to be highly useful in interpreting the rather complex transient spectra.

     
    more » « less
  4. Abstract

    A far‐red absorbing sensitizer, BF2‐chelated azadipyrromethane (azaBODIPY) has been employed as an electron acceptor to synthesize a series of push‐pull systems linked with different nitrogenous electron donors, viz.,N,N‐dimethylaniline (NND), triphenylamine (TPA), and phenothiazine (PTZ) via an acetylene linker. The structural integrity of the newly synthesized push‐pull systems was established by spectroscopic, electrochemical, spectroelectrochemical, and DFT computational methods. Cyclic and differential pulse voltammetry studies revealed different redox states and helped in the estimation of the energies of the charge‐separated states. Further, spectroelectrochemical studies performed in a thin‐layer optical cell revealed diagnostic peaks of azaBODIPY⋅in the visible and near‐IR regions. Free‐energy calculations revealed the charge separation from one of the covalently linked donors to the1azaBODIPY* to yield Donor⋅+‐azaBODIPY⋅to be energetically favorable in a polar solvent, benzonitrile, and the frontier orbitals generated on the optimized structures helped in assessing such a conclusion. Consequently, the steady‐state emission studies revealed quenching of the azaBODIPY fluorescence in all of the investigated push‐pull systems in benzonitrile and to a lesser extent in mildly polar dichlorobenzene, and nonpolar toluene. The femtosecond pump‐probe studies revealed the occurrence of excited charge transfer (CT) in nonpolar toluene while a complete charge separation (CS) for all three push‐pull systems in polar benzonitrile. The CT/CS products populated the low‐lying3azaBODIPY* prior to returning to the ground state. Global target (GloTarAn) analysis of the transient data revealed the lifetime of the final charge‐separated states (CSS) to be 195 ps for NND‐derived, 50 ps for TPA‐derived, and 85 ps for PTZ‐derived push‐pull systems in benzonitrile.

     
    more » « less
  5. Abstract

    Using the popular metal‐ligand axial coordination self‐assembly approach, donor‐acceptor conjugates have been constructed using zinc tetrapyrroles (porphyrin (ZnP), phthalocyanine (ZnPc), and naphthalocyanine (ZnNc)) as electron donors and imidazole functionalized tetracyanobutadiene (Im‐TCBD) and cyclohexa‐2,5‐diene‐1,4‐diylidene‐expanded‐tetracyanobutadiene (Im‐DCNQ) as electron acceptors. The newly formed donor‐acceptor conjugates were fully characterized by a suite of physicochemical methods, including absorption and emission, electrochemistry, and computational methods. The measured binding constants for the 1 : 1 complexes were in the order of 104–105 M−1in o‐dichlorobenzene. Free‐energy calculations and the energy level diagrams revealed the high exergonicity for the excited state electron transfer reactions. However, in the case of the ZnNc:Im‐DCNQ complex, owing to the facile oxidation of ZnNc and facile reduction of Im‐DCNQ, slow electron transfer was witnessed in the dark without the aid of light. Systematic transient pump‐probe studies were performed to secure evidence of excited state charge separation and gather their kinetic parameters. The rate of charge separation was as high as 1011 s−1suggesting efficient processes. These findings show that the present self‐assembly approach could be utilized to build donor‐acceptor constructs with powerful electron acceptors, TCBD and DCNQ, to witness ground and excited state charge transfer, fundamental events required in energy harvesting, and building optoelectronic devices.

     
    more » « less