skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global climate and nutrient controls of photosynthetic capacity
Abstract There is huge uncertainty about how global exchanges of carbon between the atmosphere and land will respond to continuing environmental change. A better representation of photosynthetic capacity is required for Earth System models to simulate carbon assimilation reliably. Here we use a global leaf-trait dataset to test whether photosynthetic capacity is quantitatively predictable from climate, based on optimality principles; and to explore how this prediction is modified by soil properties, including indices of nitrogen and phosphorus availability, measured in situ. The maximum rate of carboxylation standardized to 25 °C ( V cmax25 ) was found to be proportional to growing-season irradiance, and to increase—as predicted—towards both colder and drier climates. Individual species’ departures from predicted V cmax25 covaried with area-based leaf nitrogen ( N area ) but community-mean V cmax25 was unrelated to N area , which in turn was unrelated to the soil C:N ratio. In contrast, leaves with low area-based phosphorus ( P area ) had low V cmax25 (both between and within communities), and P area increased with total soil P. These findings do not support the assumption, adopted in some ecosystem and Earth System models, that leaf-level photosynthetic capacity depends on soil N supply. They do, however, support a previously-noted relationship between photosynthesis and soil P supply.  more » « less
Award ID(s):
1753859 1831944
PAR ID:
10227369
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Communications Biology
Volume:
4
Issue:
1
ISSN:
2399-3642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Accurately representing the relationships between nitrogen supply and photosynthesis is crucial for reliably predicting carbon–nitrogen cycle coupling in Earth System Models (ESMs). Most ESMs assume positive correlations amongst soil nitrogen supply, leaf nitrogen content, and photosynthetic capacity. However, leaf photosynthetic nitrogen demand may influence the leaf nitrogen response to soil nitrogen supply; thus, responses to nitrogen supply are expected to be the largest in environments where demand is the greatest. Using a nutrient addition experiment replicated across 26 sites spanning four continents, we demonstrated that climate variables were stronger predictors of leaf nitrogen content than soil nutrient supply. Leaf nitrogen increased more strongly with soil nitrogen supply in regions with the highest theoretical leaf nitrogen demand, increasing more in colder and drier environments than warmer and wetter environments. Thus, leaf nitrogen responses to nitrogen supply are primarily influenced by climatic gradients in photosynthetic nitrogen demand, an insight that could improve ESM predictions. 
    more » « less
  2. Summary Nitrogen (N) limitation has been considered as a constraint on terrestrial carbon uptake in response to rising CO2and climate change. By extension, it has been suggested that declining carboxylation capacity (Vcmax) and leaf N content in enhanced‐CO2experiments and satellite records signify increasing N limitation of primary production. We predictedVcmaxusing the coordination hypothesis and estimated changes in leaf‐level photosynthetic N for 1982–2016 assuming proportionality with leaf‐levelVcmaxat 25°C. The whole‐canopy photosynthetic N was derived using satellite‐based leaf area index (LAI) data and an empirical extinction coefficient forVcmax, and converted to annual N demand using estimated leaf turnover times. The predicted spatial pattern ofVcmaxshares key features with an independent reconstruction from remotely sensed leaf chlorophyll content. Predicted leaf photosynthetic N declined by 0.27% yr−1, while observed leaf (total) N declined by 0.2–0.25% yr−1. Predicted global canopy N (and N demand) declined from 1996 onwards, despite increasing LAI. Leaf‐level responses to rising CO2, and to a lesser extent temperature, may have reduced the canopy requirement for N by more than rising LAI has increased it. This finding provides an alternative explanation for declining leaf N that does not depend on increasing N limitation. 
    more » « less
  3. Summary Interactions between carbon (C) and nitrogen (N) cycles in terrestrial ecosystems are simulated in advanced vegetation models, yet methodologies vary widely, leading to divergent simulations of past land C balance trends. This underscores the need to reassess our understanding of ecosystem processes, given recent theoretical advancements and empirical data. We review current knowledge, emphasising evidence from experiments and trait data compilations for vegetation responses to CO2and N input, alongside theoretical and ecological principles for modelling. N fertilisation increases leaf N content but inconsistently enhances leaf‐level photosynthetic capacity. Whole‐plant responses include increased leaf area and biomass, with reduced root allocation and increased aboveground biomass. Elevated atmospheric CO2also boosts leaf area and biomass but intensifies belowground allocation, depleting soil N and likely reducing N losses. Global leaf traits data confirm these findings, indicating that soil N availability influences leaf N content more than photosynthetic capacity. A demonstration model based on the functional balance hypothesis accurately predicts responses to N and CO2fertilisation on tissue allocation, growth and biomass, offering a path to reduce uncertainty in global C cycle projections. 
    more » « less
  4. Abstract Plants invest a considerable amount of leaf nitrogen in the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO), forming a strong coupling of nitrogen and photosynthetic capacity. Variability in the nitrogen-photosynthesis relationship indicates different nitrogen use strategies of plants (i.e., the fraction nitrogen allocated to RuBisCO; fLNR), however, the reason for this remains unclear as widely different nitrogen use strategies are adopted in photosynthesis models. Here, we use a comprehensive database of in situ observations, a remote sensing product of leaf chlorophyll and ancillary climate and soil data, to examine the global distribution in fLNR using a random forest model. We find global fLNR is 18.2 ± 6.2%, with its variation largely driven by negative dependence on leaf mass per area and positive dependence on leaf phosphorus. Some climate and soil factors (i.e., light, atmospheric dryness, soil pH, and sand) have considerable positive influences on fLNR regionally. This study provides insight into the nitrogen-photosynthesis relationship of plants globally and an improved understanding of the global distribution of photosynthetic potential. 
    more » « less
  5. Abstract The connection between soil nitrogen availability, leaf nitrogen, and photosynthetic capacity is not perfectly understood. Because these three components tend to be positively related over large spatial scales, some posit that soil nitrogen positively drives leaf nitrogen, which positively drives photosynthetic capacity. Alternatively, others posit that photosynthetic capacity is primarily driven by above-ground conditions. Here, we examined the physiological responses of a non-nitrogen-fixing plant (Gossypium hirsutum) and a nitrogen-fixing plant (Glycine max) in a fully factorial combination of light by soil nitrogen availability to help reconcile these competing hypotheses. Soil nitrogen stimulated leaf nitrogen in both species, but the relative proportion of leaf nitrogen used for photosynthetic processes was reduced under elevated soil nitrogen in all light availability treatments due to greater increases in leaf nitrogen content than chlorophyll and leaf biochemical process rates. Leaf nitrogen content and biochemical process rates in G. hirsutum were more responsive to changes in soil nitrogen than those in G. max, probably due to strong G. max investments in root nodulation under low soil nitrogen. Nonetheless, whole-plant growth was significantly enhanced by increased soil nitrogen in both species. Light availability consistently increased relative leaf nitrogen allocation to leaf photosynthesis and whole-plant growth, a pattern that was similar between species. These results suggest that the leaf nitrogen–photosynthesis relationship varies under different soil nitrogen levels and that these species preferentially allocated more nitrogen to plant growth and non-photosynthetic leaf processes, rather than photosynthesis, as soil nitrogen increased. 
    more » « less