skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cytokinin and Ethylene Cell Signaling Pathways from Prokaryotes to Eukaryotes
Cytokinins (CKs) and ethylene (ET) are among the most ancient organic chemicals on Earth. A wide range of organisms including plants, algae, fungi, amoebae, and bacteria use these substances as signaling molecules to regulate cellular processes. Because of their ancestral origin and ubiquitous occurrence, CKs and ET are also considered to be ideal molecules for inter-kingdom communication. Their signal transduction pathways were first historically deciphered in plants and are related to the two-component systems, using histidine kinases as primary sensors. Paradoxically, although CKs and ET serve as signaling molecules in different kingdoms, it has been supposed for a long time that the canonical CK and ET signaling pathways are restricted to terrestrial plants. These considerations have now been called into question following the identification over recent years of genes encoding CK and ET receptor homologs in many other lineages within the tree of life. These advances shed new light on the dissemination and evolution of these hormones as both intra- and inter-specific communication molecules in prokaryotic and eukaryotic organisms.  more » « less
Award ID(s):
1855066
PAR ID:
10227449
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Cells
Volume:
9
Issue:
11
ISSN:
2073-4409
Page Range / eLocation ID:
2526
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This review focuses on the evolution of plant hormone signaling pathways. Like the chemical nature of the hormones themselves, the signaling pathways are diverse. Therefore, we focus on a group of hormones whose primary perception mechanism involves an Skp1/Cullin/F-box-type ubiquitin ligase: auxin, jasmonic acid, gibberellic acid, and strigolactone. We begin with a comparison of the core signaling pathways of these four hormones, which have been established through studies conducted in model organisms in the Angiosperms. With the advent of next-generation sequencing and advanced tools for genetic manipulation, the door to understanding the origins of hormone signaling mechanisms in plants beyond these few model systems has opened. For example, in-depth phylogenetic analyses of hormone signaling components are now being complemented by genetic studies in early diverging land plants. Here we discuss recent investigations of how basal land plants make and sense hormones. Finally, we propose connections between the emergence of hormone signaling complexity and major developmental transitions in plant evolution. 
    more » « less
  2. Santos, AL (Ed.)
    Peroxisomes are key regulators of cellular and metabolic homeostasis. These organelles play important roles in redox metabolism, the oxidation of very-long-chain fatty acids (VLCFAs), and the biosynthesis of ether phospholipids. Given the essential role of peroxisomes in cellular homeostasis, peroxisomal dysfunction has been linked to various pathological conditions, tissue functional decline, and aging. In the past few decades, a variety of cellular signaling and metabolic changes have been reported to be associated with defective peroxisomes, suggesting that many cellular processes and functions depend on peroxisomes. Peroxisomes communicate with other subcellular organelles, such as the nucleus, mitochondria, endoplasmic reticulum (ER), and lysosomes. These inter-organelle communications are highly linked to the key mechanisms by which cells surveil defective peroxisomes and mount adaptive responses to protect them from damages. In this review, we highlight the major cellular changes that accompany peroxisomal dysfunction and peroxisomal inter-organelle communication through membrane contact sites, metabolic signaling, and retrograde signaling. We also discuss the age-related decline of peroxisomal protein import and its role in animal aging and age-related diseases. Unlike other organelle stress response pathways, such as the unfolded protein response (UPR) in the ER and mitochondria, the cellular signaling pathways that mediate stress responses to malfunctioning peroxisomes have not been systematically studied and investigated. Here, we coin these signaling pathways as “peroxisomal stress response pathways”. Understanding peroxisomal stress response pathways and how peroxisomes communicate with other organelles are important and emerging areas of peroxisome research. 
    more » « less
  3. Abstract Classical axon guidance ligands and their neuronal receptors were first identified due to their fundamental roles in regulating connectivity in the developing nervous system. Since their initial discovery, it has become clear that these signaling molecules play important roles in the development of a broad array of tissue and organ systems across phylogeny. In addition to these diverse developmental roles, there is a growing appreciation that guidance signaling pathways have important functions in adult organisms, including the regulation of tissue integrity and homeostasis. These roles in adult organisms include both tissue‐intrinsic activities of guidance molecules, as well as systemic effects on tissue maintenance and function mediated by the nervous and vascular systems. While many of these adult functions depend on mechanisms that mirror developmental activities, such as regulating adhesion and cell motility, there are also examples of adult roles that may reflect signaling activities that are distinct from known developmental mechanisms, including the contributions of guidance signaling pathways to lineage commitment in the intestinal epithelium and bone remodeling in vertebrates. In this review, we highlight studies of guidance receptors and their ligands in adult tissues outside of the nervous system, focusing on in vivo experimental contexts. Together, these studies lay the groundwork for future investigation into the conserved and tissue‐specific mechanisms of guidance receptor signaling in adult tissues. Key PointsAxon guidance ligand and receptor expression often persist into adulthood in neuronal and non‐neuronal tissues alike.Recent work in genetic model organisms highlights the diverse roles of guidance factors in adult tissues.Guidance factors are required intrinsically in a variety of adult tissues but can also regulate tissue function indirectly via functions in the nervous and vascular systems.Studies outside of the nervous system are likely to enhance our understanding of these diverse siganling molecules and could suggest novel signaling modalities in the nervous system. 
    more » « less
  4. Sopory, SK (Ed.)
    As sessile organisms, plants are constantly exposed to a variety of environmental stresses that have detrimental effects on their growth and development, leading to major crop yield losses worldwide. To cope with adverse conditions plants have developed several adaptive mechanisms. A thorough understanding these mechanisms is critical to generate plants for the future. The heterotrimeric G-protein complex, composed of Gα, Gβ, and Gγ subunits, participates in regulation of multiple cellular signaling pathways and have multifaceted roles in regulating stress responses of plants. The complex has two functional entities, the GTP-bound Gα subunit and the Gβγ dimer, both of which by interacting with additional proteins can activate various signaling networks. The involvement of G-proteins has been shown in plants’ response to drought, salinity, extreme temperatures, heavy metal, ozone, and UV-B radiation. Due to their versatility and the number of processes modulated by them, G-proteins have emerged as key targets for generating stress tolerant crops. In this review, we provide an overview of the current knowledge of the roles of G proteins in abiotic stress tolerance, with examples from model plant Arabidopsis thaliana, where these processes are most widely studied and from additional agriculturally relevant crops, where their potential is realized for human usage. 
    more » « less
  5. Rebeille, F.; Marechal, E. (Ed.)
    N-acylethanolamines (NAEs) are a group of lipid signaling molecules derived from the phospholipid precursor N-acylphosphatidylethanolamine (NAPE). NAEs can be processed by a wide range of metabolic processes including hydrolysis by fatty acid amide hydrolase (FAAH), peroxidation by lipoxygenases (LOX), and conjugation by glycosyl- and malonyl-transferases. The diversity of NAE metabolites points to participation in multiple downstream pathways for regulation and function. NAEs with acyl chains of 18C are typically the most predominant types in vascular plants. Whereas in nonvascular plants and some algae, the arachidonic acid-containing NAE, anandamide (a functional “endocannabinoid” in animal systems), was recently reported. A signaling role for anandamide and other NAEs is well established in vertebrates, while NAEs and their oxylipin metabolites are recently becoming appreciated for lipid mediator roles in vascular plants. Here, the NAE metabolism and function in plants are overviewed, with particular emphasis on processes described in vascular plants where most attention has been focused. 
    more » « less