skip to main content

Title: Isoelectronic perturbations to f - d -electron hybridization and the enhancement of hidden order in URu 2 Si 2

Electrical resistivity measurements were performed on single crystals of URu2–xOsxSi2up tox= 0.28 under hydrostatic pressure up toP= 2 GPa. As the Os concentration,x, is increased, 1) the lattice expands, creating an effective negative chemical pressurePch(x); 2) the hidden-order (HO) phase is enhanced and the system is driven toward a large-moment antiferromagnetic (LMAFM) phase; and 3) less external pressurePcis required to induce the HO→LMAFM phase transition. We compare the behavior of theT(x,P) phase boundary reported here for the URu2-xOsxSi2system with previous reports of enhanced HO in URu2Si2upon tuning withPor similarly in URu2–xFexSi2upon tuning with positivePch(x). It is noteworthy that pressure, Fe substitution, and Os substitution are the only known perturbations that enhance the HO phase and induce the first-order transition to the LMAFM phase in URu2Si2. We present a scenario in which the application of pressure or the isoelectronic substitution of Fe and Os ions for Ru results in an increase in the hybridization of the U-5f-electron and transition metald-electron states which leads to electronic instability in the paramagnetic phase and the concurrent formation of HO (and LMAFM) in URu2Si2. Calculations in the tight-binding approximation are included to determine the strength of hybridization between the U-5f-electron states and thed-electron states of more » Ru and its isoelectronic Fe and Os substituents in URu2Si2.

« less
Authors:
; ; ; ; ; ; ; ; ; ;
Award ID(s):
1810310
Publication Date:
NSF-PAR ID:
10227627
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
20
Page Range or eLocation-ID:
Article No. e2026591118
ISSN:
0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Using inelastic X-ray scattering beyond the dipole limit and hard X-ray photoelectron spectroscopy we establish the dual nature of the U 5 f electrons in U M 2 S i 2 (M = Pd, Ni, Ru, Fe), regardless of their degree of delocalization. We have observed that the compounds have in common a local atomic-like state that is well described by the U 5 f 2 configuration with the Γ 1 ( 1 ) and Γ 2 quasi-doublet symmetry. The amount of the U 5 f 3 configuration, however, varies considerably across the U M 2 S i 2 series,more »indicating an increase of U 5f itineracy in going from M = Pd to Ni to Ru and to the Fe compound. The identified electronic states explain the formation of the very large ordered magnetic moments in U P d 2 S i 2 and U N i 2 S i 2 , the availability of orbital degrees of freedom needed for the hidden order in U R u 2 S i 2 to occur, as well as the appearance of Pauli paramagnetism in U F e 2 S i 2 . A unified and systematic picture of the U M 2 S i 2 compounds may now be drawn, thereby providing suggestions for additional experiments to induce hidden order and/or superconductivity in U compounds with the tetragonal body-centered T h C r 2 S i 2 structure.« less
  2. Combining experimental and theoretical studies, we investigate the role of R-site (R = Y, Sm, Bi) element on the phase formation and thermal stability of R 2 (Mn 1−x Fe x ) 4 O 10−δ ( x = 0, 0.5, 1) mullite-type oxides. Our results show a distinct R-site dependent phase behavior for mullite-type oxides as Fe is substituted for Mn: 100% mullite-type phase was formed in (Y, Sm, Bi) 2 Mn 4 O 10 ; 55% and 18% of (Y, Sm) 2 Mn 2 Fe 2 O 10−δ was found when R = Y and Sm, respectively, for equalmore »Fe and Mn molar concentrations in the reactants, whereas Bi formed 54% O10- and 42% O9-mixed mullite-type phases. Furthermore, when the reactants contain 100% Fe, no mullite-type phase was formed for R = Y and Sm, but a sub-group transition to Bi 2 Fe 4 O 9 O9-phase was found for R = Bi. Thermogravimetric analysis and density functional theory (DFT) calculation results show a decreasing thermal stability in O10-type structure with increasing Fe incorporation; for example, the decomposition temperature is 1142 K for Bi 2 Mn 2 Fe 2 O 10−δ vs. 1217 K for Bi 2 Mn 4 O 10 . On the other hand, Bi 2 Fe 4 O 9 O9-type structure is found to be thermally stable up to 1227 K. These findings are explained by electronic structure calculations: (1) as Fe concentration increases, Jahn–Teller distortion results in mid band-gap empty states from unstable Fe 4+ occupied octahedra, which is responsible for the decrease in O10 structure stability; (2) the directional sp orbital hybridization unique to Bi effectively stabilizes the mullite-type structure as Fe replaces Mn.« less
  3. A common characteristic of many “overdoped” cuprates prepared with high-pressure oxygen isTcvalues ≥ 50 K that often exceed that of optimally doped parent compounds, despite O stoichiometries that place the materials at the edge or outside of the conventional boundary between superconducting and normal Fermi liquid states. X-ray absorption fine-structure (XAFS) measurements at 52 K on samples of high-pressure oxygen (HPO) YSr2Cu2.75Mo0.25O7.54,Tc= 84 K show that the Mo is in the (VI) valence in an unusually undistorted octahedral geometry with predominantly Mo neighbors that is consistent with its assigned substitution for Cu in the chain sites of the structure. Perturbationsmore »of the Cu environments are minimal, although the Cu X-ray absorption near-edge structure (XANES) differs from that in other cuprates. The primary deviation from the crystal structure is therefore nanophase separation into Mo- and Cu-enriched domains. There are, however, indications that the dynamical attributes of the structure are altered relative to YBa2Cu3O7, including a shift of the Cu-apical O two-site distribution from the chain to the plane Cu sites. Another effect that would influenceTcis the possibility of multiple bands at the Fermi surface caused by the presence of the second phase and the lowering of the Fermi level.

    « less
  4. Electron doping in perovskites is an effective approach to design and tailor the structure and property of materials. In A 2 BB′O 6−δ -type double perovskites, B-site cation order can be tunable by A-site modification, potentially leading to significant effect on the oxygen nonstoichiometry of the compounds. La 3+ -doped Sr 2 FeMoO 6−δ (Sr 2−x La x FeMoO 6−δ , SLFM with 0 ≤ x ≤ 1) double perovskites have been designed and characterized systematically in this study as anode materials for solid oxide fuel cells. Rietveld refinement of powder X-ray diffraction reveals a crystalline symmetry transition of SLFMmore »from tetragonal to orthorhombic with the increase of La content, driven by the extra electron onto the antibonding orbitals of e g and t 2g of Fe/Mo cations. An increase in Fe/Mo anti-site defect accompanies this phase transition. Solid oxide fuel cells incorporating the Sr 1.8 La 0.2 FeMoO 6−δ (SLFM2) anode demonstrate impressive power outputs and stable performance under direct CH 4 operation because of its altered electronic structure, desired oxygen vacancy concentration and enhanced reducibility. Density functional theory plus U correction calculations provide an insight into how La doping affects the Fe/Mo anti-site defects and consequently the oxygen transport dynamics.« less
  5. A correlated material in the vicinity of an insulator–metal transition (IMT) exhibits rich phenomenology and a variety of interesting phases. A common avenue to induce IMTs in Mott insulators is doping, which inevitably leads to disorder. While disorder is well known to create electronic inhomogeneity, recent theoretical studies have indicated that it may play an unexpected and much more profound role in controlling the properties of Mott systems. Theory predicts that disorder might play a role in driving a Mott insulator across an IMT, with the emergent metallic state hosting a power-law suppression of the density of states (with exponentmore »close to 1; V-shaped gap) centered at the Fermi energy. Such V-shaped gaps have been observed in Mott systems, but their origins are as-yet unknown. To investigate this, we use scanning tunneling microscopy and spectroscopy to study isovalent Ru substitutions in Sr3(Ir1-xRux)2O7(0 ≤x≤ 0.5) which drive the system into an antiferromagnetic, metallic state. Our experiments reveal that many core features of the IMT, such as power-law density of states, pinning of the Fermi energy with increasing disorder, and persistence of antiferromagnetism, can be understood as universal features of a disordered Mott system near an IMT and suggest that V-shaped gaps may be an inevitable consequence of disorder in doped Mott insulators.

    « less