We report a theoretical investigation of effects of Mn and Co substitution in the transition metal sites of the kagomé-lattice ferromagnet, Fe3Sn2. Herein, hole- and electron-doping effects of Fe3Sn2have been studied by density-functional theory calculations on the parent phase and on the substituted structural models of Fe3−
Electrical resistivity measurements were performed on single crystals of URu2–
- Award ID(s):
- 1810310
- PAR ID:
- 10227627
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 20
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- Article No. e2026591118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract x Mx Sn2(M = Mn, Co;x = 0.5, 1.0). All optimized structures favor the ferromagnetic ground state. Analysis of the electronic density of states (DOS) and band structure plots reveals that the hole (electron) doping leads to a progressive decrease (increase) in the magnetic moment per Fe atom and per unit cell overall. The high DOS is retained nearby the Fermi level in the case of both Mn and Co substitutions. The electron doping with Co results in the loss of nodal band degeneracies, while in the case of hole doping with Mn emergent nodal band degeneracies and flatbands initially are suppressed in Fe2.5Mn0.5Sn2but re-emerge in Fe2MnSn2. These results provide key insights into potential modifications of intriguing coupling between electronic and spin degrees of freedom observed in Fe3Sn2. -
Triangular Arrangement of Ferromagnetic Iron Chains in the High‐ T C Ferromagnet TiFe 1−x Os 2+x B 2
Abstract Transition‐metal borides (TMBs) containing B
n ‐fragment (n >3) have recently gained interest for their ability to enable exciting magnetic materials. Herein, we show that the B4‐containing TiFe0.64(1)Os2.36(1)B2is a new ferromagnetic TMB with a Curie temperature of 523(2) K and a Weiss constant of 554(3) K, originating from the chain ofM 3‐triangles (M =64 %Fe+36 %Os). The new phase was synthesized from the elements by arc‐melting, and its structure was elucidated by single‐crystal X‐ray diffraction. It belongs to the Ti1+x Os2−x RuB2‐type structure (space groupP 2 m , no. 189) and contains trigonal‐planar B4boron fragments [B−B distance of 1.87(4) Å] interacting withM 3‐triangles [M–M distances of 2.637(8) Å and 3.0199(2) Å]. The experimental results were supported by computational calculations based on the ideal TiFeOs2B2composition, which revealed strong ferromagnetic interactions within and between the Fe3‐triangles. This discovery represents the first magnetically ordered Os‐rich TMB, thus it will help expand our knowledge of the role of Os in low‐dimensional magnetism of intermetallics and enable the design of such materials in the future. -
Abstract Fe‐Al‐bearing bridgmanite may be the dominant host for ferric iron in Earth's lower mantle. Here we report the synthesis of (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3bridgmanite (FA50) with the highest Fe3+‐Al3+coupled substitution known to date. X‐ray diffraction measurements showed that at ambient conditions, the FA50 adopted the LiNbO3structure. Upon compression at room temperature to 18 GPa, it transformed back into the bridgmanite structure, which remained stable up to 102 GPa and 2,600 K. Fitting Birch‐Murnaghan equation of state of FA50 bridgmanite yields
V 0 = 172.1(4) Å3,K 0 = 229(4) GPa withK 0′ = 4(fixed). The calculated bulk sound velocity of the FA50 bridgmanite is ~7.7% lower than MgSiO3bridgmanite, mainly because the presence of ferric iron increases the unit‐cell mass by 15.5%. This difference likely represents the upper limit of sound velocity anomaly introduced by Fe3+‐Al3+substitution. X‐ray emission and synchrotron Mössbauer spectroscopy measurements showed that after laser annealing, ~6% of Fe3+cations exchanged with Al3+and underwent the high‐ to low‐spin transition at 59 GPa. The low‐spin proportion of Fe3+increased gradually with pressure and reached 17–31% at 80 GPa. Since the cation exchange and spin transition in this Fe3+‐Al3+‐enriched bridgmanite do not cause resolvable unit‐cell volume reduction, and the increase of low‐spin Fe3+fraction with pressure occurs gradually, the spin transition would not produce a distinct seismic signature in the lower mantle. However, it may influence iron partitioning and isotopic fractionation, thus introducing chemical heterogeneity in the lower mantle. -
We present a comprehensive study of the inhomogeneous mixed-valence compound, EuPd3S4, by electrical transport, X-ray diffraction, time-domain151Eu synchrotron Mössbauer spectroscopy, and X-ray absorption spectroscopy measurements under high pressure. Electrical transport measurements show that the antiferromagnetic ordering temperature,
TN , increases rapidly from 2.8 K at ambient pressure to 23.5 K at ~19 GPa and plateaus between ~19 and ~29 GPa after which no anomaly associated withTN is detected. A pressure-induced first-order structural transition from cubic to tetragonal is observed, with a rather broad coexistence region (~20 GPa to ~30 GPa) that corresponds to theTN plateau. Mössbauer spectroscopy measurements show a clear valence transition from approximately 50:50 Eu2+:Eu3+to fully Eu3+at ~28 GPa, consistent with the vanishing of the magnetic order at the same pressure. X-ray absorption data show a transition to a fully trivalent state at a similar pressure. Our results show that pressure first greatly enhancesTN , most likely via enhanced hybridization between the Eu 4f states and the conduction band, and then, second, causes a structural phase transition that coincides with the conversion of the europium to a fully trivalent state. -
Global perspectives of the bulk electronic structure of URu 2 Si 2 from angle-resolved photoemission
Abstract Previous high-resolution angle-resolved photoemission (ARPES) studies of URu2Si2have characterized the temperature-dependent behavior of narrow-band states close to the Fermi level (
E F) at low photon energies near the zone center, with an emphasis on electronic reconstruction due to Brillouin zone folding. A substantial challenge to a proper description is that these states interact with other hole-band states that are generally absent from bulk-sensitive soft x-ray ARPES measurements. Here we provide a more globalk -space context for the presence of such states and their relation to the bulk Fermi surface (FS) topology using synchrotron-based wide-angle and photon energy-dependent ARPES mapping of the electronic structure using photon energies intermediate between the low-energy regime and the high-energy soft x-ray regime. Small-spot spatial dependence,f -resonant photoemission, Si 2p core-levels, x-ray polarization, surface-dosing modification, and theoretical surface slab calculations are employed to assist identification of bulk versus surface state character of theE F-crossing bands and their relation to specific U- or Si-terminations of the cleaved surface. The bulk FS topology is critically compared to density functional theory (DFT) and to dynamical mean field theory calculations. In addition to clarifying some aspects of the previously measured high symmetry Γ,Z andX points, incommensurate 0.6a * nested Fermi-edge states located alongZ –N –Z are found to be distinctly different from the DFT FS prediction. The temperature evolution of these states aboveT HO, combined with a more detailed theoretical investigation of this region, suggests a key role of theN -point in the hidden order transition.