skip to main content

Search for: All records

Award ID contains: 1810310

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    CeOs4Sb12, a member of the skutterudite family, has an unusual semimetallic low-temperatureL-phase that inhabits a wedge-like area of the fieldH—temperatureTphase diagram. We have conducted measurements of electrical transport and megahertz conductivity on CeOs4Sb12single crystals under pressures of up to 3 GPa and in high magnetic fields of up to 41 T to investigate the influence of pressure on the differentHTphase boundaries. While the high-temperature valence transition between the metallicH-phase and theL-phase is shifted to higherTby pressures of the order of 1 GPa, we observed only a marginal suppression of theS-phase that is found below 1 K for pressures of up to 1.91 GPa. High-field quantum oscillations have been observed for pressures up to 3.0 GPa and the Fermi surface of the high-field side of theH-phase is found to show a surprising decrease in size with increasing pressure, implying a change in electronic structure rather than a mere contraction of lattice parameters. We evaluate the field-dependence of the effective masses for different pressures and also reflect on the sample dependence of some of the properties of CeOs4Sb12which appears to be limitedmore »to the low-field region.

    « less
  2. Abstract

    Previous high-resolution angle-resolved photoemission (ARPES) studies of URu2Si2have characterized the temperature-dependent behavior of narrow-band states close to the Fermi level (EF) at low photon energies near the zone center, with an emphasis on electronic reconstruction due to Brillouin zone folding. A substantial challenge to a proper description is that these states interact with other hole-band states that are generally absent from bulk-sensitive soft x-ray ARPES measurements. Here we provide a more globalk-space context for the presence of such states and their relation to the bulk Fermi surface (FS) topology using synchrotron-based wide-angle and photon energy-dependent ARPES mapping of the electronic structure using photon energies intermediate between the low-energy regime and the high-energy soft x-ray regime. Small-spot spatial dependence,f-resonant photoemission, Si 2pcore-levels, x-ray polarization, surface-dosing modification, and theoretical surface slab calculations are employed to assist identification of bulk versus surface state character of theEF-crossing bands and their relation to specific U- or Si-terminations of the cleaved surface. The bulk FS topology is critically compared to density functional theory (DFT) and to dynamical mean field theory calculations. In addition to clarifying some aspects of the previously measured high symmetry Γ,ZandXpoints, incommensurate 0.6a* nested Fermi-edge states located alongZNZare found to be distinctlymore »different from the DFT FS prediction. The temperature evolution of these states aboveTHO, combined with a more detailed theoretical investigation of this region, suggests a key role of theN-point in the hidden order transition.

    « less
  3. Abstract

    Spin-fluctuation-mediated unconventional superconductivity can emerge at the border of magnetism, featuring a superconducting order parameter that changes sign in momentum space. Detection of such a sign-change is experimentally challenging, since most probes are not phase-sensitive. The observation of a spin resonance mode (SRM) from inelastic neutron scattering is often seen as strong phase-sensitive evidence for a sign-changing superconducting order parameter, by assuming the SRM is a spin-excitonic bound state. Here we show that for the heavy fermion superconductor CeCoIn5, its SRM defies expectations for a spin-excitonic bound state, and is not a manifestation of sign-changing superconductivity. Instead, the SRM in CeCoIn5likely arises from a reduction of damping to a magnon-like mode in the superconducting state, due to its proximity to magnetic quantum criticality. Our findings emphasize the need for more stringent tests of whether SRMs are spin-excitonic, when using their presence to evidence sign-changing superconductivity.

  4. Free, publicly-accessible full text available January 1, 2023
  5. Free, publicly-accessible full text available December 23, 2022
  6. In matter, any spontaneous symmetry breaking induces a phase transition characterized by an order parameter, such as the magnetization vector in ferromagnets, or a macroscopic many-electron wave function in superconductors. Phase transitions with unknown order parameter are rare but extremely appealing, as they may lead to novel physics. An emblematic and still unsolved example is the transition of the heavy fermion compound U R u 2 S i 2 (URS) into the so-called hidden-order (HO) phase when the temperature drops below T 0 = 17.5 K. Here, we show that the interaction between the heavy fermion and the conduction band states near the Fermi level has a key role in the emergence of the HO phase. Using angle-resolved photoemission spectroscopy, we find that while the Fermi surfaces of the HO and of a neighboring antiferromagnetic (AFM) phase of well-defined order parameter have the same topography, they differ in the size of some, but not all, of their electron pockets. Such a nonrigid change of the electronic structure indicates that a change in the interaction strength between states near the Fermi level is a crucial ingredient for the HO to AFM phase transition.
  7. Electrical resistivity measurements were performed on single crystals of URu2–xOsxSi2up tox= 0.28 under hydrostatic pressure up toP= 2 GPa. As the Os concentration,x, is increased, 1) the lattice expands, creating an effective negative chemical pressurePch(x); 2) the hidden-order (HO) phase is enhanced and the system is driven toward a large-moment antiferromagnetic (LMAFM) phase; and 3) less external pressurePcis required to induce the HO→LMAFM phase transition. We compare the behavior of theT(x,P) phase boundary reported here for the URu2-xOsxSi2system with previous reports of enhanced HO in URu2Si2upon tuning withPor similarly in URu2–xFexSi2upon tuning with positivePch(x). It is noteworthy that pressure, Fe substitution, and Os substitution are the only known perturbations that enhance the HO phase and induce the first-order transition to the LMAFM phase in URu2Si2. We present a scenario in which the application of pressure or the isoelectronic substitution of Fe and Os ions for Ru results in an increase in the hybridization of the U-5f-electron and transition metald-electron states which leads to electronic instability in the paramagnetic phase and the concurrent formation of HO (and LMAFM) in URu2Si2. Calculations in the tight-binding approximation are included to determine the strength of hybridization between the U-5f-electron states and thed-electron states ofmore »Ru and its isoelectronic Fe and Os substituents in URu2Si2.

    « less