skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: What Kind of Place Is School to Learn? A Comparative Perspective From Students on the Question.
In 1972 Howard Becker argued that “school is a lousy place to learn anything”. However, Becker’s analysis was based on a comparison of ethnographic studies of on-the-job learning with an ideal typical representation of school. This paper revisits the issue of whether and how schools may be a lousy place to learn by listening to and interpreting the perspectives of students themselves. We draw on a sample of 300 interviews with students conducted in the context of researching what and how students learned in a program called FUSE Studios, which we have previously conceptualized as “an alternative infrastructure for learning in schools”. We asked students whether and how FUSE was different from their other classes, and their responses provided us with a unique window into what students think of school as a learning environment. Herein, we share their perspectives and draw implications for future learning sciences work.  more » « less
Award ID(s):
1657438
PAR ID:
10227833
Author(s) / Creator(s):
;
Editor(s):
Gresalfi, M; Horn, I
Date Published:
Journal Name:
Proceedings of the 14th International Conference of the Learning Sciences: The Interdisciplinarity of the Learning Sciences
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the United States, Black and Latinx students are underrepresented in STEM courses and careers due to a dearth of culturally relevant opportunities, which in turn are connected to broader issues of social justice. Place-based environmental civic science offers potential for addressing these issues by enabling students to apply their STEM learning to mitigate local environmental problems. By civic science we refer to science in which all citizens, not just experts, engage for the public good. In this paper, we report on a study in which we followed middle-and high-school science and math classes in urban schools serving racial/ethnic minoritized students as they engaged in an innovative contextualized curriculum—a place-based civic science model in which students work with STEM community partners to address an environmental issue in their community. We draw from students’ open-ended reflections on what they learned from participating in place-based environmental civic science projects that could help their communities. Thematic analyses of reflections collected from 291 students point to beliefs in the usefulness of science to effect community change. Students articulated the science they learned or used in the project and how it could affect their community; they made references to real world applications of science in their project work and made links between STEM and civic contributions. In their own words, the majority of students noted ways that STEM was relevant to their communities now or in the future; in addition, a subset of students expressed changes in their thinking about how they personally could apply science to positively impact their communities and the ties between STEM and social justice. Analyses also point to a sense of confidence and purpose students gained from using STEM learning for their goals of community contribution. Results of this study suggest that focusing on local place as a foundation for students’ STEM learning and linking that learning to the civic contributions they can make, cultivates students’ perceptions of how they can use science to benefit their communities. Findings also suggest that engaging students in place-based civic science work provides effective foundations for nurturing STEM interest and addressing the underrepresentation of youth of color in STEM. 
    more » « less
  2. Making sense of what to do about the many daunting socio-environmental issues that we face will require intercultural understanding, openness to learning, and a capacity to draw on the strengths of multiple perspectives and to recognize limitations of dominant perspectives such as Eurocentric science. Navigating multiple perspectives in the school science classroom can be particularly treacherous for Indigenous students, whose cultural worldviews have often been excluded or denigrated in Eurocentric educational contexts. We present findings from a partnership project that is designing, implementing, studying, and refining instructional experiences for middle school students from significantly/predominantly Indigenous communities in Alaska and Hawai’i. This paper describes our efforts to understand project partners’ standpoints, acknowledging that in designing and implementing multi-perspective middle school science instruction, it will be critical to understand the multiple perspectives that we ourselves bring to the work. We present and discuss the views that project partners (including teachers) have shared concerning science, science education, multiple perspectives, and Indigenous cultural integrity and potential consequentiality for the project’s collaborative work. Five prominent themes relate to (1) the challenge of defining Indigenous and Eurocentric science for application in an instructional design context, (2) relationships with place, (3) centrality of language, (4) scaffolding and understanding learning through a multi-perspective lens, and (5) constraints associated with Eurocentric classroom and science contexts. 
    more » « less
  3. Engineering Projects in Community Service (EPICS) High utilizes human-centered design processes to teach high school students how to develop solutions to real-world problems within their communities. The goals of EPICS High are to utilize both principles from engineering and social entrepreneurship to engage high and middle school students as problem-solvers and spark interest in STEM careers. Recently, the Cisco corporate advised fund at the Silicon Valley Community Foundation, granted Arizona State University funds to expand EPICS High to underrepresented students and study the student outcomes from participation in this innovative program. In this exploratory study we combined qualitative methods—in person observations and informal interviews—along with pre and post surveys with high school students, to answer the questions: What skills do students gain and how does their mindset about engineering entrepreneurship develop through participation in EPICS High? Research took place in Title I schools (meaning they have a high number of students from low-income families) as well as non-Title I schools. Our preliminary results show that students made gains in the following areas: their attitudes toward engineering; ability to improve upon existing ideas; incorporating stakeholders; overcoming obstacles; social responsibility; and appreciation of multiple perspectives when solving engineering problems. While males have better baseline scores for most measures, females tend to have the most growth in many of these areas. We conclude that these initial measures show positive outcomes for students participating in EPICS High, and provide questions for further research. 
    more » « less
  4. The Colorado SCience and ENgineering Inquiry Collaborative for Rural K12 Outreach (SCENIC Colorado) is investigating an educational infrastructure for supporting engineering and science learning and identity formation as part of an outreach program with rural Colorado high schools. This research takes the rural context into careful consideration. While rural places are often described by their deficits (Reagan et al., 2019), this study operationalizes place-based pedagogy and the theoretical framework of rural cultural wealth (Crumb et al., 2022) to conceptualize and engage rural places from an asset-based perspective. We believe rural places can be rich environments for engineering and science learning. Therefore, we aspire to support high school students with the development of soil or air quality inquiry projects that are relevant to their local rural communities. Situated within a larger study on the SCENIC outreach program and its impact on student participation in and identification with engineering and science, this paper focuses more narrowly on place-based engineering with students in the rural context. The research questions are: What aspects of the outreach program's educational infrastructure enable place-based science and engineering inquiry? What aspects of place—their locality's history and culture—inform rural students' selection of environmental monitoring topics to investigate? How does conducting place-based environmental monitoring projects contribute to rural students’ engineering and science identity development? 
    more » « less
  5. Research Problem. Computer science (CS) education researchers conducting studies that target high school students have likely seen their studies impacted by COVID-19. Interpreting research findings impacted by COVID-19 presents unique challenges that will require a deeper understanding as to how the pandemic has affected underserved and underrepresented students studying or unable to study computing. Research Question. Our research question for this study was: In what ways has the high school computer science educational ecosystem for students been impacted by COVID-19, particularly when comparing schools based on relative socioeconomic status of a majority of students? Methodology. We used an exploratory sequential mixed methods study to understand the types of impacts high school CS educators have seen in their practice over the past year using the CAPE theoretical dissaggregation framework to measure schools’ Capacity to offer CS, student Access to CS education, student Participation in CS, and Experiences of students taking CS. Data Collection Procedure. We developed an instrument to collect qualitative data from open-ended questions, then collected data from CS high school educators (n = 21) and coded them across CAPE. We used the codes to create a quantitative instrument. We collected data from a wider set of CS high school educators ( n = 185), analyzed the data, and considered how these findings shape research conducted over the last year. Findings. Overall, practitioner perspectives revealed that capacity for CS Funding, Policy & Curriculum in both types of schools grew during the pandemic, while the capacity to offer physical and human resources decreased. While access to extracurricular activities decreased, there was still a significant increase in the number of CS courses offered. Fewer girls took CS courses and attendance decreased. Student learning and engagement in CS courses were significantly impacted, while other noncognitive factors like interest in CS and relevance of technology saw increases. Practitioner perspectives also indicated that schools serving students from lower-income families had 1) a greater decrease in the number of students who received information about CS/CTE pathways; 2) a greater decrease in the number of girls enrolled in CS classes; 3) a greater decrease in the number of students receiving college credit for dual-credit CS courses; 4) a greater decrease in student attendance; and 5) a greater decrease in the number of students interested in taking additional CS courses. On the flip-side, schools serving students from higher income families had significantly higher increases in the number of students interested in taking additional CS courses. 
    more » « less