Developing a strong engineering identity, or sense of belonging in engineering, is essential to pursuing and persisting in the field. Participating in an engineering outreach program is widely seen as an opportunity for youth to ignite and increase an identity as an engineer. As early as elementary school, youth evaluate their experiences, interests, and successes to make choices about possible futures. Although these early experiences and choices influence future participation in, pursuit of, and persistence in engineering, studies of engineering identity development have concentrated on undergraduate and high school learners. This study examines engineering identity development in elementary school students participating in an engineering education outreach program, expanding understanding of early influences on engineering identity formation. This study asks: How do students’ descriptions of their engineering experiences indicate the influence their experiences have on their engineering identity development? This study is embedded in an NSF-funded study of a university-led engineering education outreach program. In this program, pairs of university students facilitated weekly hour-long engineering design challenges in elementary classrooms throughout the school year. At the end of the academic year, we conducted semi-structured interviews with 76 fourth- and fifth-grade students who had participated in the outreach program. The interviewers asked students to rate their enjoyment of and skills in engineering within the context of the program. Iterative qualitative coding was used to elicit emergent patterns in students’ responses and examine them in the context of the Godwin et al (2016) engineering identity framework, using the constructs of interest, performance/competence, and recognition. Responses were then analyzed based on participants’ gender to understand and identify potential differences in influences on engineering identity development. Findings indicate that student talk around interest tended to be more positive, while student talk around performance/competence tended to be more negative, indicating the type of relationships students had with their interest in engineering compared to their perceived skills in doing engineering. However, within the construct of performance/competence, girls used negative language at a higher frequency than boys. Within this construct-based code, there were categories with large variations in positive and negative talk by gender. These gendered patterns provide insight into the differing ways girls and boys interact with engineering and how they start to develop engineering identities.
more »
« less
Work in Progress: Place-based Engineering with Rural Schools: Investigating the SCience and ENgineering Inquiry Collaborative (SCENIC) in Colorado
The Colorado SCience and ENgineering Inquiry Collaborative for Rural K12 Outreach (SCENIC Colorado) is investigating an educational infrastructure for supporting engineering and science learning and identity formation as part of an outreach program with rural Colorado high schools. This research takes the rural context into careful consideration. While rural places are often described by their deficits (Reagan et al., 2019), this study operationalizes place-based pedagogy and the theoretical framework of rural cultural wealth (Crumb et al., 2022) to conceptualize and engage rural places from an asset-based perspective. We believe rural places can be rich environments for engineering and science learning. Therefore, we aspire to support high school students with the development of soil or air quality inquiry projects that are relevant to their local rural communities. Situated within a larger study on the SCENIC outreach program and its impact on student participation in and identification with engineering and science, this paper focuses more narrowly on place-based engineering with students in the rural context. The research questions are: What aspects of the outreach program's educational infrastructure enable place-based science and engineering inquiry? What aspects of place—their locality's history and culture—inform rural students' selection of environmental monitoring topics to investigate? How does conducting place-based environmental monitoring projects contribute to rural students’ engineering and science identity development?
more »
« less
- Award ID(s):
- 2318489
- PAR ID:
- 10620594
- Publisher / Repository:
- ASEE Conferences
- Date Published:
- Format(s):
- Medium: X
- Location:
- University of Colorado, Boulder, CO
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the United States, 1 in 5 people, approximately 66.3 million individuals, live in a rural area. To address the growing need for computing professionals and the need for a computationally literate populace, we need to engage rural learners effectively. A first step in this direction is understanding the learning context for students engaging in computer science, and how that differs for a rural population. In this paper, we draw upon the National Survey of Science and Mathematics Education, the High School Longitudinal Study of 2009, and the 2021 American Community Survey, to underscore a lack of access to computer science learning contexts for students in these communities. We also explore how rural out-migration is compounding this challenge, and explore the roots of the rural out-migration trend. We then examine how multiple strains of research and scholarship identify rurality as either a place-based identification (i.e., where a student is from) or a distinct social identity. While convenient, geographic-based definitions lack important nuance in understanding rural populations and tend to emphasize heterogeneity in rural populations, especially regarding economic factors (i.e., what the communities produce). In contrast, identity-based definitions often emphasize commonalities across rural populations including a set of shared values, a sense of belonging to a rural community, emphasis on social bonds, and a distrust of solutions offered by government, academia, and technology which are often seen as misguided and antithetical to those shared values. In certain kinds of decision-making, this rural identity has even been shown to overshadow intersectional racial and ethnic identities. This is an important consideration as 22\% of the US rural population is composed of racial and ethnic minorities. Finally, we discuss strategies to engage with rural populations authentically and meaningfully. We offer as an illustrative example our Cyber Pipeline program, an outreach effort including a Creative Commons licensed, customizable, modular curriculum; extensive teacher preparation program; and ongoing support for K-12 teachers working to bring computer science into rural schools. We also describe reasons why these rural-dwelling teachers seek to provide computer science education for their students. We highlight the specific challenges of this program, as well as our identified promising practices, in the hopes of fostering similar programs across the United States.more » « less
-
Broadening participation in the skilled technical workforce is a national priority given strong evidence of growing critical vacancies in engineering coupled with the urgent need for this workforce to better reflect the rich diversity of the nation. Scholars and activists often call for increased focus on education access, quality, and workforce development among rural Appalachian communities, noting that students from these communities are under-represented in higher education generally, and engineering careers specifically. Investing in preK-12 education, engaging youth as valued members of their communities, and cultivating workforce opportunities such as in advanced manufacturing have all been highlighted by the Appalachian Regional Commission as vital to strengthening economic resilience. However, scaffolding engineering and technical career pathways for Appalachian youth at scale in the context of broader systemic issues is challenging. Past research on the career choices of Appalachian youth show that sparked interest alone was not sufficient to consider engineering careers. Research on the sustained development of interest in engineering highlights rich networks of formal and informal experiences as catalysts or supportive infrastructure. Yet, access to such opportunities varies greatly. School systems often lack the necessary personnel, money, or space to offer these experiences, and, even if opportunities are available, often only a small subset of students may be able to participate. Further, common views of what engineering work is and who can do it are narrow, biased, and exclusive. This CAREER project has focused on three areas of research. The first area, focused on school-industry partnerships through COVID-19 in the region, highlighted the importance of rich partnerships, resilient stakeholders, and innovative contexts to persist throughout the COVID-19 pandemic. This is particularly pertinent to partnerships and collaboration, sustainability of these collaborations, and programming in the context of STEM skilled technical workforce development programs in rural places. The second area of research, focused on developing a conceptual framework for engineering education research and engagement in rural places, highlighted the importance of place, individual student and community assets, and leveraging these things to provide context and meaning in a decontextualized K-12 curriculum. Finally, the third research area, focused on systematically reviewing literature related to the assessment of systems thinking in K-12 education, highlighted the lack of comprehensive assessment tools that can apply across many educational disciplines but particularly in areas as it relates to socio-technical problems. Together, these three research areas ultimately seek to inform broader aspects of K-12 education, such as career and technical education, issues related to rural education, and ultimately focusing on students’ ability to handle complex problems in their communities or other contexts with systems thinking.more » « less
-
Broadening participation in the skilled technical workforce is a national priority given strong evidence of growing critical vacancies in engineering coupled with the urgent need for this workforce to better reflect the rich diversity of the nation. Scholars and activists often call for increased focus on education access, quality, and workforce development among rural Appalachian communities, noting that students from these communities are under-represented in higher education generally, and engineering careers specifically. Investing in preK-12 education, engaging youth as valued members of their communities, and cultivating workforce opportunities such as in advanced manufacturing have all been highlighted by the Appalachian Regional Commission as vital to strengthening economic resilience. However, scaffolding engineering and technical career pathways for Appalachian youth at scale in the context of broader systemic issues is challenging. Past research on the career choices of Appalachian youth show that sparked interest alone was not sufficient to consider engineering careers. Research on the sustained development of interest in engineering highlights rich networks of formal and informal experiences as catalysts or supportive infrastructure. Yet, access to such opportunities varies greatly. School systems often lack the necessary personnel, money, or space to offer these experiences, and, even if opportunities are available, often only a small subset of students may be able to participate. Further, common views of what engineering work is and who can do it are narrow, biased, and exclusive. This CAREER project has focused on three areas of research. The first area, focused on school-industry partnerships through COVID-19 in the region, highlighted the importance of rich partnerships, resilient stakeholders, and innovative contexts to persist throughout the COVID-19 pandemic. This is particularly pertinent to partnerships and collaboration, sustainability of these collaborations, and programming in the context of STEM skilled technical workforce development programs in rural places. The second area of research, focused on developing a conceptual framework for engineering education research and engagement in rural places, highlighted the importance of place, individual student and community assets, and leveraging these things to provide context and meaning in a decontextualized K-12 curriculum. Finally, the third research area, focused on systematically reviewing literature related to the assessment of systems thinking in K-12 education, highlighted the lack of comprehensive assessment tools that can apply across many educational disciplines but particularly in areas as it relates to socio-technical problems. Together, these three research areas ultimately seek to inform broader aspects of K-12 education, such as career and technical education, issues related to rural education, and ultimately focusing on students’ ability to handle complex problems in their communities or other contexts with systems thinking.more » « less
-
This research paper describes a study of elementary teacher learning in an online graduate program in engineering education for in-service teachers. While the existing research on teachers in engineering focuses on their disciplinary understandings and beliefs (Hsu, Cardella, & Purzer, 2011; Martin, et al., 2015; Nadelson, et al., 2015; Van Haneghan, et al., 2015), there is increasing attention to teachers' pedagogy in engineering (Capobianco, Delisi, & Radloff, 2018). In our work, we study teachers' pedagogical sense-making and reflection, which, we argue, is critical for teaching engineering design. This study takes place in [blinded] program, in which teachers take four graduate courses over fifteen months. The program was designed to help teachers not only learn engineering content, but also shift their thinking and practice to be more responsive to their students. Two courses focus on pedagogy, including what it means to learn engineering and instructional approaches to support this learning. These courses consist of four main elements, in which teachers: 1) Read data-rich engineering education articles to reflect on learning engineering; 2) Participate in online video clubs, looking at classroom videos of students’ engineering and commenting on what they notice; 3) Conduct interviews with learners about the mechanism of a pull-back car; and 4) Plan and teach engineering lessons, collecting and analyzing video from their classrooms. In the context of this program, we ask: what stances do teachers take toward learning and teaching engineering design? What shifts do we observe in their stances? We interviewed teachers at the start of the program and after each course. In addition to reflecting on their learning and teaching, teachers watched videos of students’ engineering and discussed what they saw as relevant for teaching engineering. We informally compared summaries from previous interviews to get a sense of changes in how participants talked about engineering, how they approached teaching engineering, and what they noticed in classroom videos. Through this process, we identified one teacher to focus on for this paper: Alma is a veteran 3rd-5th grade science teacher in a rural, racially-diverse public school in the southeastern region of the US. We then developed content logs of Alma's interviews and identified emergent themes. To refine these themes, we looked for confirming and disconfirming evidence in the interviews and in her coursework in the program. We coded each interview for these themes and developed analytic memos, highlighting where we saw variability and stability in her stances and comparing across interviews to describe shifts in Alma's reasoning. It was at this stage that we narrowed our focus to her stances toward the engineering design process (EDP). In this paper, we describe and illustrate shifts we observed in Alma's reasoning, arguing that she exhibited dramatic shifts in her stances toward teaching and learning the EDP. At the start of the program, she was stable in treating the EDP as a series of linear steps that students and engineers progress through. After engaging and reflecting on her own engineering in the first course, she started to express a more fluid stance when talking more abstractly about the EDP but continued to take it up as a linear process in her classroom teaching. By the end of the program, Alma exhibited a growing stability across contexts in her stance toward the EDP as a fluid set of overlapping practices that students and engineers could engage in.more » « less
An official website of the United States government

