skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantitative Stability in the Geometry of Semi-discrete Optimal Transport
Abstract We show quantitative stability results for the geometric “cells” arising in semi-discrete optimal transport problems. We first show stability of the associated Laguerre cells in measure, without any connectedness or regularity assumptions on the source measure. Next we show quantitative invertibility of the map taking dual variables to the measures of Laguerre cells, under a Poincarè-Wirtinger inequality. Combined with a regularity assumption equivalent to the Ma–Trudinger–Wang conditions of regularity in Monge-Ampère, this invertibility leads to stability of Laguerre cells in Hausdorff measure and also stability in the uniform norm of the dual potential functions, all stability results come with explicit quantitative bounds. Our methods utilize a combination of graph theory, convex geometry, and Monge-Ampère regularity theory.  more » « less
Award ID(s):
1700094 2000128
PAR ID:
10227850
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Mathematics Research Notices
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivated by conjectures in Mirror Symmetry, we continue the study of the real Monge–Ampère operator on the boundary of a simplex. This can be formulated in terms of optimal transport, and we consider, more generally, the problem of optimal transport between symmetric probability measures on the boundary of a simplex and of the dual simplex. For suitably regular measures, we obtain regularity properties of the transport map, and of its convex potential. To do so, we exploit boundary regularity results for optimal transport maps by Caffarelli, together with the symmetries of the simplex. 
    more » « less
  2. We review recent advances in the numerical analysis of the Monge–Ampère equation. Various computational techniques are discussed including wide stencil finite difference schemes, two-scaled methods, finite element methods, and methods based on geometric considerations. Particular focus is the development of appropriate stability and consistency estimates which lead to rates of convergence of the discrete approximations. Finally we present numerical experiments which highlight each method for a variety of test problem with different levels of regularity. 
    more » « less
  3. We study the solvability of singular Abreu equations which arise in the approximation of convex functionals subject to a convexity constraint. Previous works established the solvability of their second boundary value problems either in two dimensions, or in higher dimensions under either a smallness condition or a radial symmetry condition. Here, we solve the higher-dimensional case by transforming singular Abreu equations into linearized Monge–Ampère equations with drifts. We establish global Hölder estimates for linearized Monge–Ampère equations with drifts under suitable hypotheses, and then apply them to prove the regularity and solvability of the second boundary value problem for singular Abreu equations in higher dimensions. Many cases with general right-hand side are also discussed. 
    more » « less
  4. We construct new examples of Monge-Ampère metrics with polyhedral singular structures, motivated by problems related to the optimal transport of point masses and to mirror symmetry. We also analyze the stability of the singular structures under small perturbations of the data given in the problem under consideration. 
    more » « less
  5. By constructing explicit supersolutions, we obtain the optimal global Hölder regularity for several singular Monge-Ampère equations on general bounded open convex domains including those related to complete affine hyperbolic spheres, and proper affine hyperspheres. Our analysis reveals that certain singular-looking equations, such as \begin{document}$$ \det D^2 u = |u|^{-n-2-k} (x\cdot Du -u)^{-k} $$\end{document} with zero boundary data, have unexpected degenerate nature. 
    more » « less