skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal boundary regularity for some singular Monge-Ampère equations on bounded convex domains
By constructing explicit supersolutions, we obtain the optimal global Hölder regularity for several singular Monge-Ampère equations on general bounded open convex domains including those related to complete affine hyperbolic spheres, and proper affine hyperspheres. Our analysis reveals that certain singular-looking equations, such as \begin{document}$$ \det D^2 u = |u|^{-n-2-k} (x\cdot Du -u)^{-k} $$\end{document} with zero boundary data, have unexpected degenerate nature.  more » « less
Award ID(s):
2054686
PAR ID:
10327289
Author(s) / Creator(s):
Date Published:
Journal Name:
Discrete & Continuous Dynamical Systems
Volume:
42
Issue:
5
ISSN:
1078-0947
Page Range / eLocation ID:
2199
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper studies a family of generalized surface quasi-geostrophic (SQG) equations for an active scalar \begin{document}$$ \theta $$\end{document} on the whole plane whose velocities have been mildly regularized, for instance, logarithmically. The well-posedness of these regularized models in borderline Sobolev regularity have previously been studied by D. Chae and J. Wu when the velocity \begin{document}$ u $$\end{document} is of lower singularity, i.e., \begin{document}$$ u = -\nabla^{\perp} \Lambda^{ \beta-2}p( \Lambda) \theta $$\end{document}, where \begin{document}$$ p $$\end{document} is a logarithmic smoothing operator and \begin{document}$$ \beta \in [0, 1] $$\end{document}. We complete this study by considering the more singular regime \begin{document}$$ \beta\in(1, 2) $$\end{document}$. The main tool is the identification of a suitable linearized system that preserves the underlying commutator structure for the original equation. We observe that this structure is ultimately crucial for obtaining continuity of the flow map. In particular, straightforward applications of previous methods for active transport equations fail to capture the more nuanced commutator structure of the equation in this more singular regime. The proposed linearized system nontrivially modifies the flux of the original system in such a way that it coincides with the original flux when evaluated along solutions of the original system. The requisite estimates are developed for this modified linear system to ensure its well-posedness. 
    more » « less
  2. This paper investigates the global existence of weak solutions for the incompressible \begin{document}$ p $$\end{document}-Navier-Stokes equations in \begin{document}$$ \mathbb{R}^d $$\end{document} \begin{document}$$ (2\leq d\leq p) $$\end{document}. The \begin{document}$$ p $$\end{document}-Navier-Stokes equations are obtained by adding viscosity term to the \begin{document}$$ p $$\end{document}-Euler equations. The diffusion added is represented by the \begin{document}$$ p $$\end{document}-Laplacian of velocity and the \begin{document}$$ p $$\end{document}-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-\begin{document}$$ p $$\end{document}$ distances with constraint density to be characteristic functions. 
    more » « less
  3. We give a proof by foliation that the cones over \begin{document}$$ \mathbb{S}^k \times \mathbb{S}^l $$\end{document} minimize parametric elliptic functionals for each \begin{document}$$ k, \, l \geq 1 $$\end{document}. We also analyze the behavior at infinity of the leaves in the foliations. This analysis motivates conjectures related to the existence and growth rates of nonlinear entire solutions to equations of minimal surface type that arise in the study of such functionals. 
    more » « less
  4. We address the global existence and uniqueness of solutions for the anisotropically reduced 2D Kuramoto-Sivashinsky equations in a periodic domain with initial data \begin{document}$$ u_{01} \in L^2 $$\end{document} and \begin{document}$$ u_{02} \in H^{-1 + \eta} $$\end{document} for \begin{document}$$ \eta > 0 $$\end{document}. 
    more » « less
  5. For any finite horizon Sinai billiard map \begin{document}$ T $$\end{document} on the two-torus, we find \begin{document}$$ t_*>1 $$\end{document} such that for each \begin{document}$$ t\in (0,t_*) $$\end{document} there exists a unique equilibrium state \begin{document}$$ \mu_t $$\end{document} for \begin{document}$$ - t\log J^uT $$\end{document}, and \begin{document}$$ \mu_t $$\end{document} is \begin{document}$$ T $$\end{document}-adapted. (In particular, the SRB measure is the unique equilibrium state for \begin{document}$$ - \log J^uT $$\end{document}.) We show that \begin{document}$$ \mu_t $$\end{document} is exponentially mixing for Hölder observables, and the pressure function \begin{document}$$ P(t) = \sup_\mu \{h_\mu -\int t\log J^uT d \mu\} $$\end{document} is analytic on \begin{document}$$ (0,t_*) $$\end{document}. In addition, \begin{document}$$ P(t) $$\end{document} is strictly convex if and only if \begin{document}$$ \log J^uT $$\end{document} is not \begin{document}$$ \mu_t $$\end{document}-a.e. cohomologous to a constant, while, if there exist \begin{document}$$ t_a\ne t_b $$\end{document} with \begin{document}$$ \mu_{t_a} = \mu_{t_b} $$\end{document}, then \begin{document}$$ P(t) $$\end{document} is affine on \begin{document}$$ (0,t_*) $$\end{document}. An additional sparse recurrence condition gives \begin{document}$$ \lim_{t\downarrow 0} P(t) = P(0) $$\end{document}$. 
    more » « less