In recent years, area‐selective atomic layer deposition (AS‐ALD) has attracted increasing interest for its applications in back‐end interconnect processes, and selective deposition of Al2O3is of particular interest because Al2O3can serve as an etch hard mask. However, Al2O3is one of the most difficult ALD systems to block. In this work, a strategy is presented to enhance the blocking ability of dodecanethiol (DDT) self‐assembled monolayers (SAMs) against Al2O3ALD. It is shown that by conducting DDT deposition on a slightly oxidized Cu surface, which is mainly composed of Cu2O, rather than on a freshly acid‐etched Cu surface, which mainly consists of metallic Cu, the quality of the DDT SAM can be improved. It is further shown that the DDT SAMs formed on Cu2O‐covered Cu substrates are about 3–4 times more effective in blocking Al2O3than that on acid‐etched Cu surfaces when ALD is performed under subsaturation condition. However, as the Cu oxidation process continues, CuO is formed and the blocking ability of DDT degrades. Finally, selective Al2O3deposition on DDT‐treated Cu/low‐
Elucidating metal oxide growth mechanisms is essential for precisely designing and fabricating nanostructured oxides with broad applications in energy and electronics. However, current epitaxial oxide growth methods are based on macroscopic empirical knowledge, lacking fundamental guidance at the nanoscale. Using correlated in situ environmental transmission electron microscopy, statistically-validated quantitative analysis, and density functional theory calculations, we show epitaxial Cu2O nano-island growth on Cu is layer-by-layer along Cu2O(110) planes, regardless of substrate orientation, contradicting classical models that predict multi-layer growth parallel to substrate surfaces. Growth kinetics show cubic relationships with time, indicating individual oxide monolayers follow Frank-van der Merwe growth whereas oxide islands follow Stranski-Krastanov growth. Cu sources for island growth transition from step edges to bulk substrates during oxidation, contrasting with classical corrosion theories which assume subsurface sources predominate. Our results resolve alternative epitaxial island growth mechanisms, improving the understanding of oxidation dynamics critical for advanced manufacturing at the nanoscale.
more » « less- Award ID(s):
- 1905647
- PAR ID:
- 10227928
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract k patterns using the combined strategy of Cu oxidation and subsaturation conditions achieves selectivity of 0.99 after 4 nm of Al2O3ALD. -
Abstract A variety of mechanisms are reported to play critical roles in contributing to the high carrier/electron mobility in oxide/SrTiO3(STO) heterostructures. By using La0.95Sr0.05TiO3(LSTO) epitaxially grown on different single crystal substrates (such as STO, GdScO3, LaAlO3, (LaAlO3)0.3(Sr2AlTaO6)0.7, and CeO2buffered STO) as the model systems, the formation of a conducting substrate surface layer (CSSL) on STO substrate is shown at relatively low growth temperature and high oxygen pressure (725 °C, 5 × 10–4 Torr), which contributes to the enhanced conductivity of the LSTO/STO heterostructures. Different from the conventional oxygen vacancy model, this work reveals that the formation of the CSSL occurs when growing an oxide layer (LSTO in this case) on STO, while neither annealing nor the growth of an Au layer alone at the exact same growth condition generates the CSSL in STO. It demonstrates that the oxide layer actively pulls oxygen from STO substrate at given growth conditions, leading to the formation of the CSSL. The observations emphasize the oxygen transfer across film/substrate interface during the synthesis of oxide heterostructures playing a critical role in functional properties.
-
The concept of remote epitaxy involves a two-dimensional van der Waals layer covering the substrate surface, which still enable adatoms to follow the atomic motif of the underlying substrate. The mode of growth must be carefully defined as defects, e.g., pinholes, in two-dimensional materials can allow direct epitaxy from the substrate, which, in combination with lateral epitaxial overgrowth, could also form an epilayer. Here, we show several unique cases that can only be observed for remote epitaxy, distinguishable from other two-dimensional material-based epitaxy mechanisms. We first grow BaTiO3on patterned graphene to establish a condition for minimizing epitaxial lateral overgrowth. By observing entire nanometer-scale nuclei grown aligned to the substrate on pinhole-free graphene confirmed by high-resolution scanning transmission electron microscopy, we visually confirm that remote epitaxy is operative at the atomic scale. Macroscopically, we also show variations in the density of GaN microcrystal arrays that depend on the ionicity of substrates and the number of graphene layers.
-
Magnetic and ferroelectric oxide thin films have long been studied for their applications in electronics, optics, and sensors. The properties of these oxide thin films are highly dependent on the film growth quality and conditions. To maximize the film quality, epitaxial oxide thin films are frequently grown on single‐crystal oxide substrates such as strontium titanate (SrTiO3) and lanthanum aluminate (LaAlO3) to satisfy lattice matching and minimize defect formation. However, these single‐crystal oxide substrates cannot readily be used in practical applications due to their high cost, limited availability, and small wafer sizes. One leading solution to this challenge is film transfer. In this demonstration, a material from a new class of multiferroic oxides is selected, namely bismuth‐based layered oxides, for the transfer. A water‐soluble sacrificial layer of Sr3Al2O6is inserted between the oxide substrate and the film, enabling the release of the film from the original substrate onto a polymer support layer. The films are transferred onto new substrates of silicon and lithium niobate (LiNbO3) and the polymer layer is removed. These substrates allow for the future design of electronic and optical devices as well as sensors using this new group of multiferroic layered oxide films.
-
Herein, we describe an atomic layer deposition (ALD) system that is optimized for the growth of thin films on high-surface-area, porous materials. The system incorporates a moveable dual-zone furnace allowing for rapid transfer of a powder substrate between heating zones whose temperatures are optimized for precursor adsorption and oxidative removal of the precursor ligands. The reactor can both be evacuated, eliminating the need for a carrier gas during precursor exposure, and rotated, to enhance contact between a powder support and the gas phase, both of which help us to minimize mass transfer limitations in the pores during film growth. The capabilities of the ALD system were demonstrated by growing La2O3, Fe2O3, and LaFeO3films on a 120 m2 g−1MgAl2O4powder. Analysis of these films using scanning transmission electron microscopy and temperature-programmed desorption of 2-propanol confirmed the conformal nature of the oxide films.