skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-Objective Approach for Optimal Size and Location of DGs in Distribution Systems
In the recent years, due to the economic and environmental requirements, the use of distributed generations (DGs) has increased. If DGs have the optimal size and are located at the optimal locations, they are capable of enhancing the voltage profile and reducing the power loss. This paper proposes a new approach to obtain the optimal location and size of DGs. To this end, exchange market algorithm (EMA) is offered to find the optimal size and location of DGs subject to minimizing loss, increasing voltage profile, and improving voltage stability in the distribution systems. The effectiveness of the proposed approach is verified on both 33- and 69-bus IEEE standard systems.  more » « less
Award ID(s):
1757207
PAR ID:
10227995
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2020 IEEE Green Energy and Smart Systems Conference (IGESSC)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a droop-free distributed secondary control for DC microgrids with admissible voltage profile guarantees. The control objectives are achieved through an average voltage regulator, voltage variance regulator, and a relaxed current sharing regulator. Regulations of the global average voltage to the microgrid rated voltage is ensured by the average voltage regulator and regulations of the global voltage variance to a predetermined reference is enabled by the voltage variance regulator. In order to achieve the objectives of voltage regulation, the current sharing from one of the DGs which may be owned by the microgrid community is relaxed. The global dynamic model of the DC microgrid with the proposed control is derived. Besides, steady-state analysis is performed to show that all objectives can be achieved. Finally, simulations on a 4-DG DC microgrid test system are performed to validate the efficacy of the proposed control. 
    more » « less
  2. This paper presents a novel harmonic-based overcurrent relay which detects and isolates three-phase faults in a meshed microgrid. The harmonic signals are generated by two Distributed Generators (DGs) which each of them communicate with its adjacent DG. In the first step, a set of features are extracted from DG output signal and then fed to a Support Vector Machine (SVM) to detect occurrence of fault. Once the fault is detected, based on minimum voltage measured by DG, two closest DGs will recognize and these two DGs inject two distinct harmonics to activate harmonic-based relays. As each set of relays located at either beginning or end of each section is activated by current with specific frequency, these relays behave like directional relays without using voltage transformers. As a result, the proposed method is cost-effective solution. The optimum Time Dial Settings (TDSs) of these relays are obtained by solving a coordination problem with Particle Swarm Optimization (PSO) algorithm. Real-time results are taken by OPAL-RT to show the effectiveness of the proposed method for two different locations of fault in a meshed microgrid. 
    more » « less
  3. We propose a multiphase distribution locational marginal price (DLMP) model. Compared to existing DLMP models in the literature, the proposed model has three distinctive features: i) It provides a linear approximation of relevant DLMP components which captures the global behavior of nonlinear functions; ii) it decomposes into most general components, i.e., energy, loss, congestion, voltage violations; and iii) it incorporates both wye and delta grid connections along with unbalanced loadings. The developed model is tested on a benchmark IEEE 13-bus unbalanced distribution system with the inclusion of distributed generators (DGs). 
    more » « less
  4. Microgrid, which is one of the main foundations of the future grid, inherits many properties of the smart grid such as, self‐healing capability, real‐time monitoring, advanced two‐way communication systems, low voltage ride through capability of distributed generator (DG) units, and high penetration of DGs. These substantial changes in properties and capabilities of the future grid result in significant protection challenges such as bidirectional fault current, various levels of fault current under different operating conditions, necessity of standards for automation system, cyber security issues, as well as, designing an appropriate grounding system, fast fault detection/location method, the need for an efficient circuit breaker for DC microgrids. Due to these new challenges in microgrid protection, the conventional protection strategies have to be either modified or substituted with new ones. This study aims to provide a comprehensive review of the protection challenges in AC and DC microgrids and available solutions to deal with them. Future trends in microgrid protection are also briefly discussed. 
    more » « less
  5. null (Ed.)
    This paper proposes a finite-time event-triggered secondary frequency and voltage control for islanded AC microgrids (MGs) in a distributed fashion. The proposed control strategy can effectively perform frequency restoration and voltage regulations, while sharing the active and reactive power among the distributed generators (DGs) based on their power ratings. The finite-time control enables a system to reach consensus in a finite period of time enhanced from the asymptotic convergence. The event-triggered communication is utilized to reduce the communication burden among the DG controllers by transmitting data among DGs if an event-triggering condition is satisfied. The performance of the proposed finite-time event-triggered frequency control is verified utilizing a hardware-in-the-loop experimental testbed which simulates an AC MG in Opal-RT. 
    more » « less