skip to main content


Title: Mechanism of superconductivity in the Hubbard model at intermediate interaction strength
We study the fluctuations responsible for pairing in the d -wave superconducting state of the two-dimensional Hubbard model at intermediate coupling within a cluster dynamical mean-field theory with a numerically exact quantum impurity solver. By analyzing how momentum- and frequency-dependent fluctuations generate the d -wave superconducting state in different representations, we identify antiferromagnetic fluctuations as the pairing glue of superconductivity in both the underdoped and the overdoped regime. Nevertheless, in the intermediate coupling regime, the predominant magnetic fluctuations may differ significantly from those described by conventional spin fluctuation theory.  more » « less
Award ID(s):
2001465
NSF-PAR ID:
10437047
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
33
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The strong Ising spin–orbit coupling in certain two-dimensional transition metal dichalcogenides can profoundly affect the superconducting state in few-layer samples. For example, in NbSe2, this effect combines with the reduced dimensionality to stabilize the superconducting state against magnetic fields up to ~35 T, and could lead to topological superconductivity. Here we report a two-fold rotational symmetry of the superconducting state in few-layer NbSe2 under in-plane external magnetic fields, in contrast to the three-fold symmetry of the lattice. Both the magnetoresistance and critical field exhibit this two-fold symmetry, and it also manifests deep inside the superconducting state in NbSe2/CrBr3 superconductor-magnet tunnel junctions. In both cases, the anisotropy vanishes in the normal state, demonstrating that it is an intrinsic property of the superconducting phase. We attribute the behaviour to the mixing between two closely competing pairing instabilities, namely the conventional s-wave instability typical of bulk NbSe2 and an unconventional d- or p-wave channel that emerges in few-layer NbSe2. Our results demonstrate the unconventional character of the pairing interaction in few-layer transition metal dichalcogenides and highlight the exotic superconductivity in this family of two-dimensional materials. 
    more » « less
  2. Abstract

    The superconducting state and mechanism are among the least understood phenomena in twisted graphene systems. Recent tunneling experiments indicate a transition between nodal and gapped pairing with electron filling, which is not naturally understood within current theory. We demonstrate that the coexistence of superconductivity and flavor polarization leads to pairing channels that are guaranteed by symmetry to be entirely band-off-diagonal, with a variety of consequences: most notably, the pairing invariant under all symmetries can have Bogoliubov Fermi surfaces in the superconducting state with protected nodal lines, or may be fully gapped, depending on parameters, and the band-off-diagonal chiralp-wave state exhibits transitions between gapped and nodal regions upon varying the doping. We demonstrate that band-off-diagonal pairing can be the leading state when only phonons are considered, and is also uniquely favored by fluctuations of a time-reversal-symmetric intervalley coherent order motivated by recent experiments. Consequently, band-off-diagonal superconductivity allows for the reconciliation of several key experimental observations in graphene moiré systems.

     
    more » « less
  3. Abstract

    This paper addresses the transition from the normal to the superfluid state in strongly correlated two dimensional fermionic superconductors and Fermi gases. We arrive at the Berezinskii–Kosterlitz–Thouless (BKT) temperatureTBKTas a function ofattractivepairing strength by associating it with the onset of ‘quasi-condensation’ in the normal phase. Our approach builds on a criterion for determining the BKT transition temperature for atomic gases which is based on a well established quantum Monte Carlo analysis of the phase space density. This latter quantity, when derived from BCS–BEC crossover theory for fermions, leads to non-monotonic behavior forTBKTas a function of the attractive interaction or inverse scattering length. In Fermi gases, this implies a robust superconducting dome followed by a long tail from the flat BEC asymptote, rather similar to what is observed experimentally. For lattice systems we find thatTBKThas an absolute maximum of the order of 0.1EF. We discuss how our results compare with those derived from the Nelson–Kosterlitz criterion based on the mean field superfluid density and the approach to the transition from below. While there is agreement in the strict mean-field BCS regime at weak coupling, we find that at moderate pairing strength bosonic excitations cause a substantial increase inTBKTfollowed by an often dramatic decrease before the system enters the BEC regime.

     
    more » « less
  4. BACKGROUND Landau’s Fermi liquid theory provides the bedrock on which our understanding of metals has developed over the past 65 years. Its basic premise is that the electrons transporting a current can be treated as “quasiparticles”—electron-like particles whose effective mass has been modified, typically through interactions with the atomic lattice and/or other electrons. For a long time, it seemed as though Landau’s theory could account for all the many-body interactions that exist inside a metal, even in the so-called heavy fermion systems whose quasiparticle mass can be up to three orders of magnitude heavier than the electron’s mass. Fermi liquid theory also lay the foundation for the first successful microscopic theory of superconductivity. In the past few decades, a number of new metallic systems have been discovered that violate this paradigm. The violation is most evident in the way that the electrical resistivity changes with temperature or magnetic field. In normal metals in which electrons are the charge carriers, the resistivity increases with increasing temperature but saturates, both at low temperatures (because the quantized lattice vibrations are frozen out) and at high temperatures (because the electron mean free path dips below the smallest scattering pathway defined by the lattice spacing). In “strange metals,” by contrast, no saturation occurs, implying that the quasiparticle description breaks down and electrons are no longer the primary charge carriers. When the particle picture breaks down, no local entity carries the current. ADVANCES A new classification of metallicity is not a purely academic exercise, however, as strange metals tend to be the high-temperature phase of some of the best superconductors available. Understanding high-temperature superconductivity stands as a grand challenge because its resolution is fundamentally rooted in the physics of strong interactions, a regime where electrons no longer move independently. Precisely what new emergent phenomena one obtains from the interactions that drive the electron dynamics above the temperature where they superconduct is one of the most urgent problems in physics, attracting the attention of condensed matter physicists as well as string theorists. One thing is clear in this regime: The particle picture breaks down. As particles and locality are typically related, the strange metal raises the distinct possibility that its resolution must abandon the basic building blocks of quantum theory. We review the experimental and theoretical studies that have shaped our current understanding of the emergent strongly interacting physics realized in a host of strange metals, with a special focus on their poster-child: the copper oxide high-temperature superconductors. Experiments are highlighted that attempt to link the phenomenon of nonsaturating resistivity to parameter-free universal physics. A key experimental observation in such materials is that removing a single electron affects the spectrum at all energy scales, not just the low-energy sector as in a Fermi liquid. It is observations of this sort that reinforce the breakdown of the single-particle concept. On the theoretical side, the modern accounts that borrow from the conjecture that strongly interacting physics is really about gravity are discussed extensively, as they have been the most successful thus far in describing the range of physics displayed by strange metals. The foray into gravity models is not just a pipe dream because in such constructions, no particle interpretation is given to the charge density. As the breakdown of the independent-particle picture is central to the strange metal, the gravity constructions are a natural tool to make progress on this problem. Possible experimental tests of this conjecture are also outlined. OUTLOOK As more strange metals emerge and their physical properties come under the scrutiny of the vast array of experimental probes now at our disposal, their mysteries will be revealed and their commonalities and differences cataloged. In so doing, we should be able to understand the universality of strange metal physics. At the same time, the anomalous nature of their superconducting state will become apparent, offering us hope that a new paradigm of pairing of non-quasiparticles will also be formalized. The correlation between the strength of the linear-in-temperature resistivity in cuprate strange metals and their corresponding superfluid density, as revealed here, certainly hints at a fundamental link between the nature of strange metallicity and superconductivity in the cuprates. And as the gravity-inspired theories mature and overcome the challenge of projecting their powerful mathematical machinery onto the appropriate crystallographic lattice, so too will we hope to build with confidence a complete theory of strange metals as they emerge from the horizon of a black hole. Curved spacetime with a black hole in its interior and the strange metal arising on the boundary. This picture is based on the string theory gauge-gravity duality conjecture by J. Maldacena, which states that some strongly interacting quantum mechanical systems can be studied by replacing them with classical gravity in a spacetime in one higher dimension. The conjecture was made possible by thinking about some of the fundamental components of string theory, namely D-branes (the horseshoe-shaped object terminating on a flat surface in the interior of the spacetime). A key surprise of this conjecture is that aspects of condensed matter systems in which the electrons interact strongly—such as strange metals—can be studied using gravity. 
    more » « less
  5. Abstract

    We report on scalable heterointegration of superconducting electrodes and epitaxial semiconductor quantum dots (QDs) on strong piezoelectric and optically nonlinear lithium niobate. The implemented processes combine the sputter-deposited thin film superconductor niobium nitride and III–V compound semiconductor membranes onto the host substrate. The superconducting thin film is employed as a zero-resistivity electrode material for a surface acoustic wave resonator with internal quality factorsQ17000representing a three-fold enhancement compared to identical devices with normal conducting electrodes. Superconducting operation of400MHzresonators is achieved to temperaturesT>7Kand electrical radio frequency powersPrf>+9dBm. Heterogeneously integrated single QDs couple to the resonant phononic field of the surface acoustic wave resonator operated in the superconducting regime. Position and frequency selective coupling mediated by deformation potential coupling is validated using time-integrated and time-resolved optical spectroscopy. Furthermore, acoustoelectric charge state control is achieved in a modified device geometry harnessing large piezoelectric fields inside the resonator. The hybrid QD—surface acoustic wave resonator can be scaled to higher operation frequencies and smaller mode volumes for quantum phase modulation and transduction between photons and phonons via the QD. Finally, the employed materials allow for the realization of other types of optoelectronic devices, including superconducting single photon detectors and integrated photonic and phononic circuits.

     
    more » « less