skip to main content


Title: Two-loop superstring five-point amplitudes. Part II. Low energy expansion and S-duality
A bstract In an earlier paper, we constructed the genus-two amplitudes for five external massless states in Type II and Heterotic string theory, and showed that the α ′ expansion of the Type II amplitude reproduces the corresponding supergravity amplitude to leading order. In this paper, we analyze the effective interactions induced by Type IIB superstrings beyond supergravity, both for U(1) R -preserving amplitudes such as for five gravitons, and for U(1) R -violating amplitudes such as for one dilaton and four gravitons. At each order in α ′, the coefficients of the effective interactions are given by integrals over moduli space of genus-two modular graph functions, generalizing those already encountered for four external massless states. To leading and sub-leading orders, the coefficients of the effective interactions D 2 ℛ 5 and D 4 ℛ 5 are found to match those of D 4 ℛ 4 and D 6 ℛ 4 , respectively, as required by non-linear supersymmetry. To the next order, a D 6 ℛ 5 effective interaction arises, which is independent of the supersymmetric completion of D 8 ℛ 4 , and already arose at genus one. A novel identity on genus-two modular graph functions, which we prove, ensures that up to order D 6 ℛ 5 , the five-point amplitudes require only a single new modular graph function in addition to those needed for the four-point amplitude. We check that the supergravity limit of U(1) R -violating amplitudes is free of UV divergences to this order, consistently with the known structure of divergences in Type IIB supergravity. Our results give strong consistency tests on the full five-point amplitude, and pave the way for understanding S-duality beyond the BPS-protected sector.  more » « less
Award ID(s):
1914412
NSF-PAR ID:
10228357
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
2
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We compute 1 /λ corrections to the four-point functions of half-BPS operators in SU( N ) $$ \mathcal{N} $$ N = 4 super-Yang-Mills theory at large N and large ’t Hooft coupling λ = $$ {g}_{\mathrm{YM}}^2N $$ g YM 2 N using two methods. Firstly, we relate integrals of these correlators to derivatives of the mass deformed S 4 free energy, which was computed at leading order in large N and to all orders in 1 /λ using supersymmetric localization. Secondly, we use AdS/CFT to relate these 1 /λ corrections to higher derivative corrections to supergravity for scattering amplitudes of Kaluza-Klein scalars in IIB string theory on AdS 5 × S 5 , which in the flat space limit are known from worldsheet calculations. These two methods match at the order corresponding to the tree level R 4 interaction in string theory, which provides a precise check of AdS/CFT beyond supergravity, and allow us to derive the holographic correlators to tree level D 4 R 4 order. Combined with constraints from [1], our results can be used to derive CFT data to one-loop D 4 R 4 order. Finally, we use AdS/CFT to fix these correlators in the limit where N is taken to be large while g YM is kept fixed. In this limit, we present a conjecture for the small mass limit of the S 4 partition function that includes all instanton corrections and is written in terms of the same Eisenstein series that appear in the study of string theory scattering amplitudes. 
    more » « less
  2. A bstract We study the four-point function of the lowest-lying half-BPS operators in the $$ \mathcal{N} $$ N = 4 SU( N ) super-Yang-Mills theory and its relation to the flat-space four-graviton amplitude in type IIB superstring theory. We work in a large- N expansion in which the complexified Yang-Mills coupling τ is fixed. In this expansion, non-perturbative instanton contributions are present, and the SL(2 , ℤ) duality invariance of correlation functions is manifest. Our results are based on a detailed analysis of the sphere partition function of the mass-deformed SYM theory, which was previously computed using supersymmetric localization. This partition function determines a certain integrated correlator in the undeformed $$ \mathcal{N} $$ N = 4 SYM theory, which in turn constrains the four-point correlator at separated points. In a normalization where the two-point functions are proportional to N 2 − 1 and are independent of τ and $$ \overline{\tau} $$ τ ¯ , we find that the terms of order $$ \sqrt{N} $$ N and $$ 1/\sqrt{N} $$ 1 / N in the large N expansion of the four-point correlator are proportional to the non-holomorphic Eisenstein series $$ E\left(\frac{3}{2},\tau, \overline{\tau}\right) $$ E 3 2 τ τ ¯ and $$ E\left(\frac{5}{2},\tau, \overline{\tau}\right) $$ E 5 2 τ τ ¯ , respectively. In the flat space limit, these terms match the corresponding terms in the type IIB S-matrix arising from R 4 and D 4 R 4 contact inter-actions, which, for the R 4 case, represents a check of AdS/CFT at finite string coupling. Furthermore, we present striking evidence that these results generalize so that, at order $$ {N}^{\frac{1}{2}-m} $$ N 1 2 − m with integer m ≥ 0, the expansion of the integrated correlator we study is a linear sum of non-holomorphic Eisenstein series with half-integer index, which are manifestly SL(2 , ℤ) invariant. 
    more » « less
  3. Abstract

    The UV finiteness found in calculations of the 4‐point amplitude insupergravity at loop orderhas not been explained, which motivates our study of the relevant superspace invariants and on‐shell superamplitudes for bothand. The local 4‐point superinvariants forare expected to have nonlinear completions whose 6‐point amplitudes have non‐vanishing SSL's (soft scalar limits), violating the behavior required of Goldstone bosons. For, we find atthat local 6‐point superinvariant and superamplitudes, which might cancel these SSL's, do not exist. This rules out the candidate 4‐point counterterm and thus gives a plausible explanation of the observedfiniteness. However, atwe construct a local 6‐point superinvariant with non‐vanishing SSL's, so the SSL argument does not explain the observedUV finiteness. Forsupergravity there are no 6‐point invariants at eitheror 4, so the SSL argument predicts UV finiteness.

     
    more » « less
  4. A bstract It is well-known that on-shell maximally helicity-violating gluon scattering amplitudes in planar maximally supersymmetric Yang-Mills theory are dual to a bosonic Wilson loop on a null-polygonal contour. The light-like nature of the intervals is a reflection of the mass-shell condition for massless gluons involved in scattering. Presently, we introduce a Wilson loop prototype on a piece-wise curvilinear contour that can be interpreted in the T-dual language to correspond to nonvanishing gluon off-shellness. We analyze it first for four sites at one loop and demonstrate that it coincides with the four-gluon amplitude on the Coulomb branch. Encouraged by this fact, we move on to the two-loop order. To simplify our considerations, we only focus on the Sudakov asymptotics of the Wilson loop, when the off-shellness goes to zero. The latter serves as a regulator of short-distance divergences around the perimeter of the loop, i.e., divergences when gluons are integrated over a small vicinity of the Wilson loop cusps. It does not however regulate conventional ultraviolet divergences of interior closed loops. This unavoidably introduces a renormalization scale dependence and thus scheme dependence into the problem. With a choice of the scale setting and a finite renormalization, we observe exponentiation of the double logarithmic scaling of the Wilson loop with the accompanying exponent being given by the so-called hexagon anomalous dimension, which recently made its debut in the origin limit of six-leg gluon amplitudes. This is contrary to the expectation for the octagon anomalous dimension to rather emerge from our analysis suggesting that the current object encodes physics different from the Coulomb branch scattering amplitudes. 
    more » « less
  5. null (Ed.)
    A bstract The full two-loop amplitudes for five massless states in Type II and Heterotic superstrings are constructed in terms of convergent integrals over the genus-two moduli space of compact Riemann surfaces and integrals of Green functions and Abelian differentials on the surface. The construction combines elements from the BRST cohomology of the pure spinor formulation and from chiral splitting with the help of loop momenta and homology invariance. The α ′ → 0 limit of the resulting superstring amplitude is shown to be in perfect agreement with the previously known amplitude computed in Type II supergravity. Investigations of the α ′ expansion of the Type II amplitude and comparisons with predictions from S-duality are relegated to a first companion paper. A construction from first principles in the RNS formulation of the genus-two amplitude with five external NS states is relegated to a second companion paper. 
    more » « less