skip to main content


Title: Primal Dual Methods for Wasserstein Gradient Flows
Abstract Combining the classical theory of optimal transport with modern operator splitting techniques, we develop a new numerical method for nonlinear, nonlocal partial differential equations, arising in models of porous media, materials science, and biological swarming. Our method proceeds as follows: first, we discretize in time, either via the classical JKO scheme or via a novel Crank–Nicolson-type method we introduce. Next, we use the Benamou–Brenier dynamical characterization of the Wasserstein distance to reduce computing the solution of the discrete time equations to solving fully discrete minimization problems, with strictly convex objective functions and linear constraints. Third, we compute the minimizers by applying a recently introduced, provably convergent primal dual splitting scheme for three operators (Yan in J Sci Comput 1–20, 2018). By leveraging the PDEs’ underlying variational structure, our method overcomes stability issues present in previous numerical work built on explicit time discretizations, which suffer due to the equations’ strong nonlinearities and degeneracies. Our method is also naturally positivity and mass preserving and, in the case of the JKO scheme, energy decreasing. We prove that minimizers of the fully discrete problem converge to minimizers of the spatially continuous, discrete time problem as the spatial discretization is refined. We conclude with simulations of nonlinear PDEs and Wasserstein geodesics in one and two dimensions that illustrate the key properties of our approach, including higher-order convergence our novel Crank–Nicolson-type method, when compared to the classical JKO method.  more » « less
Award ID(s):
1846854 1811012
NSF-PAR ID:
10228499
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Foundations of Computational Mathematics
ISSN:
1615-3375
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper is concerned with fully discrete finite element approximations of a stochastic nonlinear Schrödinger (sNLS) equation with linear multiplicative noise of the Stratonovich type. The goal of studying the sNLS equation is to understand the role played by the noises for a possible delay or prevention of the collapsing and/or blow-up of the solution to the sNLS equation. In the paper we first carry out a detailed analysis of the properties of the solution which lays down a theoretical foundation and guidance for numerical analysis, we then present a family of three-parameters fully discrete finite element methods which differ mainly in their time discretizations and contains many well-known schemes (such as the explicit and implicit Euler schemes and the Crank-Nicolson scheme) with different combinations of time discetization strategies. The prototypical \begin{document}$ \theta $\end{document}-schemes are analyzed in detail and various stability properties are established for its numerical solution. An extensive numerical study and performance comparison are also presented for the proposed fully discrete finite element schemes.

     
    more » « less
  2. We present a fully-coupled, implicit-in-time framework for solving a thermodynamically-consistent Cahn-Hilliard Navier-Stokes system that models two-phase flows. In this work, we extend the block iterative method presented in Khanwale et al. [Simulating two-phase flows with thermodynamically consistent energy stable Cahn-Hilliard Navier-Stokes equations on parallel adaptive octree based meshes, J. Comput. Phys. (2020)], to a fully-coupled, provably second-order accurate scheme in time, while maintaining energy-stability. The new method requires fewer matrix assemblies in each Newton iteration resulting in faster solution time. The method is based on a fully-implicit Crank-Nicolson scheme in time and a pressure stabilization for an equal order Galerkin formulation. That is, we use a conforming continuous Galerkin (cG) finite element method in space equipped with a residual-based variational multiscale (RBVMS) procedure to stabilize the pressure. We deploy this approach on a massively parallel numerical implementation using parallel octree-based adaptive meshes. We present comprehensive numerical experiments showing detailed comparisons with results from the literature for canonical cases, including the single bubble rise, Rayleigh-Taylor instability, and lid-driven cavity flow problems. We analyze in detail the scaling of our numerical implementation. 
    more » « less
  3. Todorov, M D (Ed.)
    Christov functions are a complete orthonormal set of functions on L^2(-∞,∞) that allow us to expand derivatives, nonlinear products, and nonlocal (integro-differential) terms back into the same basis. These properties are beneficial when solving nonlinear evolution equations using Galerkin spectral methods. In this work, we demonstrate such a “Christov expansion method” for the Benjamin–Ono (BO) equation. In the BO equation, the dispersion term is nonlocal, given by the Hilbert transform of the second spatial derivative of the unknown function. The Hilbert transform of the Christov functions can be computed using complex integration and Cauchy’s residue theorem to obtain simple relations. Then, a Galerkin spectral expansion can be used to the solve the BO equation. Time integration is performed using a Crank–Nicolson-type scheme. Importantly, the Christov expansion method yields a banded matrix for the spatial discretization, even though the spatial terms are nonlocal. To demonstrate the approach and its implementation, we perform numerical experiments showing the steady propagation of single and the overtaking interaction of multiple BO solitary waves. 
    more » « less
  4. Abstract

    This work focuses on modeling the interaction between an incompressible, viscous fluid and a poroviscoelastic material. The fluid flow is described using the time‐dependent Stokes equations, and the poroelastic material using the Biot model. The viscoelasticity is incorporated in the equations using a linear Kelvin–Voigt model. We introduce two novel, noniterative, partitioned numerical schemes for the coupled problem. The first method uses the second‐order backward differentiation formula (BDF2) for implicit integration, while treating the interface terms explicitly using a second‐order extrapolation formula. The second method is the Crank–Nicolson and Leap‐Frog (CNLF) method, where the Crank–Nicolson method is used to implicitly advance the solution in time, while the coupling terms are explicitly approximated by the Leap‐Frog integration. We show that the BDF2 method is unconditionally stable and uniformly stable in time, while the CNLF method is stable under a CFL condition. Both schemes are validated using numerical simulations. Second‐order convergence in time is observed for both methods. Simulations over a longer period of time show that the errors in the solution remain bounded. Cases when the structure is poroviscoelastic and poroelastic are included in numerical examples.

     
    more » « less
  5. After a theory of morphogenesis in chemical cells was introduced in the 1950s, much attention had been devoted to the numerical solution of reaction-diffusion (RD) partial differential equations (PDEs). The Crank–Nicolson (CN) method has been a common second-order time-stepping procedure. However, the CN method may introduce spurious oscillations for nonsmooth data unless the time step size is sufficiently small. This article studies a nonoscillatory second-order time-stepping procedure for RD equations, called a variable- θ method , as a perturbation of the CN method. In each time level, the new method detects points of potential oscillations to implicitly resolve the solution there. The proposed time-stepping procedure is nonoscillatory and of a second-order temporal accuracy. Various examples are given to show effectiveness of the method. The article also performs a sensitivity analysis for the numerical solution of biological pattern forming models to conclude that the numerical solution is much more sensitive to the spatial mesh resolution than the temporal one. As the spatial resolution becomes higher for an improved accuracy, the CN method may produce spurious oscillations, while the proposed method results in stable solutions. 
    more » « less