Maintaining confidential information control in software is a persistent security problem where failure means secrets can be revealed via program behaviors. Information flow control techniques traditionally have been based on static or symbolic analyses — limited in scalability and specialized to particular languages. When programs do leak secrets there are no approaches to automatically repair them unless the leak causes a functional test to fail. We present our vision for HyperGI, a genetic improvement framework that detects, localizes and repairs information leakage. Key elements of HyperGI include (1) the use of two orthogonal test suites, (2) a dynamic leak detection approach which estimates and localizes potential leaks, and (3) a repair component that produces a candidate patch using genetic improvement. We demonstrate the successful use of HyperGI on several programs with no failing functional test cases. We manually examine the resulting patches and identify trade-offs and future directions for fully realizing our vision.
Automatically eliminating speculative leaks from cryptographic code with blade
We introduce Blade, a new approach to automatically and efficiently eliminate speculative leaks from cryptographic code. Blade is built on the insight that to stop leaks via speculative execution, it suffices to cut the dataflow from expressions that speculatively introduce secrets ( sources ) to those that leak them through the cache ( sinks ), rather than prohibit speculation altogether. We formalize this insight in a static type system that (1) types each expression as either transient , i.e., possibly containing speculative secrets or as being stable , and (2) prohibits speculative leaks by requiring that all sink expressions are stable. Blade relies on a new abstract primitive, protect , to halt speculation at fine granularity. We formalize and implement protect using existing architectural mechanisms, and show how Blade’s type system can automatically synthesize a minimal number of protect s to provably eliminate speculative leaks. We implement Blade in the Cranelift WebAssembly compiler and evaluate our approach by repairing several verified, yet vulnerable WebAssembly implementations of cryptographic primitives. We find that Blade can fix existing programs that leak via speculation automatically , without user intervention, and efficiently even when using fences to implement protect .
- Award ID(s):
- 1918573
- Publication Date:
- NSF-PAR ID:
- 10228508
- Journal Name:
- Proceedings of the ACM on Programming Languages
- Volume:
- 5
- Issue:
- POPL
- Page Range or eLocation-ID:
- 1 to 30
- ISSN:
- 2475-1421
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present Lifty, a domain-specific language for data-centric applications that manipulate sensitive data. A Lifty programmer annotates the sources of sensitive data with declarative security policies, and the language statically and automatically verifies that the application handles the data according to the policies. Moreover, if verification fails, Lifty suggests a provably correct repair, thereby easing the programmer burden of implementing policy enforcing code throughout the application. The main insight behind Lifty is to encode information flow control using liquid types, an expressive yet decidable type system. Liquid types enable fully automatic checking of complex, data dependent policies, and power our repair mechanism via type-driven error localization and patch synthesis. Our experience using Lifty to implement three case studies from the literature shows that (1) the Lifty policy language is sufficiently expressive to specify many real-world policies, (2) the Lifty type checker is able to verify secure programs and find leaks in insecure programs quickly, and (3) even if the programmer leaves out all policy enforcing code, the Lifty repair engine is able to patch all leaks automatically within a reasonable time.
-
WebAssembly is designed to be an alternative to JavaScript that is a safe, portable, and efficient compilation target for a variety of languages. The performance of high-level languages depends not only on the underlying performance of WebAssembly, but also on the quality of the generated WebAssembly code. In this paper, we identify several features of high-level languages that current approaches can only compile to WebAssembly by generating complex and inefficient code. We argue that these problems could be addressed if WebAssembly natively supported first-class continuations. We then present Wasm/k, which extends WebAssembly with delimited continuations. Wasm/k introduces no new value types, and thus does not require significant changes to the WebAssembly type system (validation). Wasm/k is safe, even in the presence of foreign function calls (e.g., to and from JavaScript). Finally, Wasm/k is amenable to efficient implementation: we implement Wasm/k as a local change to Wasmtime, an existing WebAssembly JIT. We evaluate Wasm/k by implementing C/k, which adds delimited continuations to C/C++. C/k uses Emscripten and its implementation serves as a case study on how to use Wasm/k in a compiler that targets WebAssembly. We present several case studies using C/k, and show that on implementing green threads, it canmore »
-
In May 2019, a new class of transient execution attack based on Meltdown called microarchitectural data sampling (MDS), was disclosed. MDS enables adversaries to leak secrets across security domains by collecting data from shared CPU resources such as data cache, fill buffers, and store buffers. These resources may temporarily hold data that belongs to other processes and privileged contexts, which could falsely be forwarded to memory accesses of an adversary. We perform an in-depth analysis of these Meltdown-style attacks using our novel fuzzing-based approach. We introduce an analysis tool, named Transynther, which mutates the basic block of existing Meltdown variants to generate and evaluate new Meltdown subvariants. We apply Transynther to analyze modern CPUs and better understand the root cause of these attacks. As a result, we find new variants of MDS that only target specific memory operations, e.g., fast string copies. Based on our findings, we propose a new attack, named Medusa, which can leak data from implicit write-combining memory operations. Since Medusa only applies to specific operations, it can be used to pinpoint vulnerable targets. In a case study, we apply Medusa to recover the key during the RSA signing operation. We show that Medusa can leak variousmore »
-
To prevent applications from leaking users' private data to attackers, researchers have developed runtime information flow control (IFC) mechanisms. Most existing approaches are either based on taint tracking or multi-execution, and the same technique is used to protect the entire application. However, today's applications are typically composed of multiple components from heterogenous and unequally trusted sources. The goal of this paper is to develop a framework to enable the flexible composition of IFC enforcement mechanisms. More concretely, we focus on reactive programs, which is an abstract model for event-driven programs including web and mobile applications. We formalize the semantics of existing IFC enforcement mechanisms with well-defined interfaces for composition, define knowledge-based security guarantees that can precisely quantify the effect of implicit leaks from taint tracking, and prove sound all composed systems that we instantiate the framework with. We identify requirements for future enforcement mechanisms to be securely composed in our framework. Finally, we implement a prototype in OCaml and compare the effects of different compositions.