skip to main content

Title: Direct continuous electromyographic control of a powered prosthetic ankle for improved postural control after guided physical training: A case study
Abstract Despite the promise of powered lower limb prostheses, existing controllers do not assist many daily activities that require continuous control of prosthetic joints according to human states and environments. The objective of this case study was to investigate the feasibility of direct, continuous electromyographic (dEMG) control of a powered ankle prosthesis, combined with physical therapist-guided training, for improved standing postural control in an individual with transtibial amputation. Specifically, EMG signals of the residual antagonistic muscles (i.e. lateral gastrocnemius and tibialis anterior) were used to proportionally drive pneumatical artificial muscles to move a prosthetic ankle. Clinical-based activities were used in the training and evaluation protocol of the control paradigm. We quantified the EMG signals in the bilateral shank muscles as well as measures of postural control and stability. Compared to the participant’s daily passive prosthesis, the dEMG-controlled ankle, combined with the training, yielded improved clinical balance scores and reduced compensation from intact joints. Cross-correlation coefficient of bilateral center of pressure excursions, a metric for quantifying standing postural control, increased to .83(±.07) when using dEMG ankle control ( passive device: .39(±.29)) . We observed synchronized activation of homologous muscles, rapid improvement in performance on the first day of the training for more » load transfer tasks, and further improvement in performance across training days (p = .006). This case study showed the feasibility of this dEMG control paradigm of a powered prosthetic ankle to assist postural control. This study lays the foundation for future study to extend these results through the inclusion of more participants and activities. « less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Wearable Technologies
Sponsoring Org:
National Science Foundation
More Like this
  1. Although the average healthy adult transitions from sit to stand over 60 times per day, most research on powered prosthesis control has only focused on walking. In this paper, we present a data-driven controller that enables sitting, standing, and walking with minimal tuning. Our controller comprises two high level modes of sit/stand and walking, and we develop heuristic biomechanical rules to control transitions. We use a phase variable based on the user's thigh angle to parameterize both walking and sit/stand motions, and use variable impedance control during ground contact and position control during swing. We extend previous work on data-driven optimization of continuous impedance parameter functions to design the sit/stand control mode using able-bodied data. Experiments with a powered knee-ankle prosthesis used by a participant with above-knee amputation demonstrate promise in clinical outcomes, as well as trade-offs between our minimal-tuning approach and accommodation of user preferences. Specifically, our controller enabled the participant to complete the sit/stand task 20% faster and reduced average asymmetry by half compared to his everyday passive prosthesis. The controller also facilitated a timed up and go test involving sitting, standing, walking, and turning, with only a mild (10%) decrease in speed compared to the everyday prosthesis.more »Our sit/stand/walk controller enables multiple activities of daily life with minimal tuning and mode switching.« less
  2. Abstract Objective. Advanced robotic lower limb prostheses are mainly controlled autonomously. Although the existing control can assist cyclic movements during locomotion of amputee users, the function of these modern devices is still limited due to the lack of neuromuscular control (i.e. control based on human efferent neural signals from the central nervous system to peripheral muscles for movement production). Neuromuscular control signals can be recorded from muscles, called electromyographic (EMG) or myoelectric signals. In fact, using EMG signals for robotic lower limb prostheses control has been an emerging research topic in the field for the past decade to address novel prosthesis functionality and adaptability to different environments and task contexts. The objective of this paper is to review robotic lower limb Prosthesis control via EMG signals recorded from residual muscles in individuals with lower limb amputations. Approach. We performed a literature review on surgical techniques for enhanced EMG interfaces, EMG sensors, decoding algorithms, and control paradigms for robotic lower limb prostheses. Main results. This review highlights the promise of EMG control for enabling new functionalities in robotic lower limb prostheses, as well as the existing challenges, knowledge gaps, and opportunities on this research topic from human motor control and clinicalmore »practice perspectives. Significance. This review may guide the future collaborations among researchers in neuromechanics, neural engineering, assistive technologies, and amputee clinics in order to build and translate true bionic lower limbs to individuals with lower limb amputations for improved motor function.« less
  3. ABSTRACT An ideal prosthesis should perform as well as or better than the missing limb it was designed to replace. Although this ideal is currently unattainable, recent advances in design have significantly improved the function of prosthetic devices. For the lower extremity, both passive prostheses (which provide no added power) and active prostheses (which add propulsive power) aim to emulate the dynamic function of the ankle joint, whose adaptive, time-varying resistance to applied forces is essential for walking and running. Passive prostheses fail to normalize energetics because they lack variable ankle impedance that is actively controlled within each gait cycle. By contrast, robotic prostheses can normalize energetics for some users under some conditions. However, the problem of adaptive and versatile control remains a significant issue. Current prosthesis-control algorithms fail to adapt to changes in gait required for walking on level ground at different speeds or on ramps and stairs. A new paradigm of ‘muscle as a tunable material’ versus ‘muscle as a motor’ offers insights into the adaptability and versatility of biological muscles, which may provide inspiration for prosthesis design and control. In this new paradigm, neural activation tunes muscle stiffness and damping, adapting the response to applied forces rathermore »than instructing the timing and amplitude of muscle force. A mechanistic understanding of muscle function is incomplete and would benefit from collaboration between biologists and engineers. An improved understanding of the adaptability of muscle may yield better models as well as inspiration for developing prostheses that equal or surpass the functional capabilities of biological limbs across a wide range of conditions.« less
  4. Avoiding obstacles poses a significant challenge for amputees using mechanically-passive transfemoral prosthetic limbs due to their lack of direct knee control. In contrast, powered prostheses can potentially improve obstacle avoidance via their ability to add energy to the system. In past work, researchers have proposed stumble recovery systems for powered prosthetic limbs that provide assistance in the event of a trip. However, these systems only aid recovery after an obstacle has disrupted the user's gait and do not proactively help the amputee avoid obstacles. To address this problem, we designed an adaptive system that learns online to use kinematic data from the prosthetic limb to detect the user's obstacle avoidance intent in early swing. When the system detects an obstacle, it alters the planned swing trajectory to help avoid trips. Additionally, the system uses a regression model to predict the required knee flexion angle for the trip response. We validated the system by comparing obstacle avoidance success rates with and without the obstacle avoidance system. For a non-amputee subject wearing the prosthesis through an adapter, the trip avoidance system improved the obstacle negotiation success rate from 37% to 89%, while an amputee subject improved his success rate from 35% tomore »71% when compared to utilizing minimum jerk trajectories for the knee and ankle joints.« less
  5. Functional electrical stimulation (FES) is a potential technique for reanimating paralyzed muscles post neurological injury/disease. Several technical challenges including difficulty in measuring and compensating for delayed muscle activation levels inhibit its satisfactory control performance. In this paper, an ultrasound (US) imaging approach is proposed to measure delayed muscle activation levels under the implementation of FES. Due to low sampling rates of US imaging, a sampled data observer (SDO) is designed to estimate the muscle activation in a continuous manner. The SDO is combined with continuous-time dynamic surface control (DSC) approach that compensates for the electromechanical delay (EMD) in the tibialis anterior (TA) activation dynamics. The stability analysis based on the Lyapunov-Krasovskii function proves that the SDO-based DSC plus delay compensation (SDO-DSC-DC) approach achieves semi-global uniformly ultimately bounded (SGUUB) tracking performance. Simulation results on an ankle dorsiflexion neuromusculoskeletal system show the root mean square error (RMSE) of desired trajectory tracking is reduced by 19.77 % by using the proposed SDO-DSC-DC compared to the DSC-DC without the SDO. The findings provide potentials for rehabilitative devices, like powered exoskeleton and FES, to assist or enhance human limb movement based on the corresponding muscle activities in real-time.