- Award ID(s):
- 2024237
- PAR ID:
- 10434051
- Date Published:
- Journal Name:
- Proceedings of the IEEERSJ International Conference on Intelligent Robots and Systems
- ISSN:
- 2153-0858
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Today’s passive prosthetic technologies limit the well-being of millions of individuals with amputations, who often walk slower, use more energy, fall more often, and develop devastating secondary deficits over time. Robotic prostheses hold the promise to address many of these challenges, but safe, reliable control strategies have remained out of reach—that is, a critical gap is the ability to provide appropriate instructions to robotic legs that enable robust ambulation in the real world. Fortunately, there are many researchers studying control strategies, but each group tests their strategies with different robotic hardware in constrained laboratory settings. This mismatch in prosthesis hardware severely limits comparison of control solutions and, along with the lack of testing in real-world environments, hinders the translation of these promising technologies. To address these challenges, we developed the Open Source Leg (OSL): a robotic knee-ankle prosthesis that facilitates controls, biomechanics, and clinical research. This paper describes the design innovations required to develop a bionic leg for broad dissemination, characterization of the OSL’s electromechanical performance, and clinical demonstration with an advanced high-level control strategy, tested with three individuals with above-knee amputations. The OSL provides a common hardware platform for scientific studies and clinical testing, lowers the barrier for new prosthetics research, and enables research beyond the laboratory: in more realistic environments, such as the hospital, community, and home.more » « less
-
Powered prostheses aim to mimic the missing biological limb with controllers that are finely tuned to replicate the nominal gait pattern of non-amputee individuals. Unfortunately, this control approach poses a problem with real-world ambulation, which includes tasks such as crossing over obstacles, where the prosthesis trajectory must be modified to provide adequate foot clearance and ensure timely foot placement. Here, we show an indirect volitional control approach that enables prosthesis users to walk at different speeds while smoothly and continuously crossing over obstacles of different sizes without explicit classification of the environment. At the high level, the proposed controller relies on a heuristic algorithm to continuously change the maximum knee flexion angle and the swing duration in harmony with the user’s residual limb. At the low level, minimum-jerk planning is used to continuously adapt the swing trajectory while maximizing smoothness. Experiments with three individuals with above-knee amputation show that the proposed control approach allows for volitional control of foot clearance, which is necessary to negotiate environmental barriers. Our study suggests that a powered prosthesis controller with intrinsic, volitional adaptability may provide prosthesis users with functionality that is not currently available, facilitating real-world ambulation.
-
Abstract In individuals with lower-limb amputations, robotic prostheses can increase walking speed, and reduce energy use, the incidence of falls and the development of secondary complications. However, safe and reliable prosthetic-limb control strategies for robust ambulation in real-world settings remain out of reach, partly because control strategies have been tested with different robotic hardware in constrained laboratory settings. Here, we report the design and clinical implementation of an integrated robotic knee–ankle prosthesis that facilitates the real-world testing of its biomechanics and control strategies. The bionic leg is open source, it includes software for low-level control and for communication with control systems, and its hardware design is customizable, enabling reduction in its mass and cost, improvement in its ease of use and independent operation of the knee and ankle joints. We characterized the electromechanical and thermal performance of the bionic leg in benchtop testing, as well as its kinematics and kinetics in three individuals during walking on level ground, ramps and stairs. The open-source integrated-hardware solution and benchmark data that we provide should help with research and clinical testing of knee–ankle prostheses in real-world environments.
-
Abstract Background After above-knee amputation, the missing biological knee and ankle are replaced with passive prosthetic devices. Passive prostheses are able to dissipate limited amounts of energy using resistive damper systems during “negative energy” tasks like sit-down. However, passive prosthetic knees are not able to provide high levels of resistance at the end of the sit-down movement when the knee is flexed, and users need the most support. Consequently, users are forced to over-compensate with their upper body, residual hip, and intact leg, and/or sit down with a ballistic and uncontrolled movement. Powered prostheses have the potential to solve this problem. Powered prosthetic joints are controlled by motors, which can produce higher levels of resistance at a larger range of joint positions than passive damper systems. Therefore, powered prostheses have the potential to make sitting down more controlled and less difficult for above-knee amputees, improving their functional mobility. Methods Ten individuals with above-knee amputations sat down using their prescribed passive prosthesis and a research powered knee-ankle prosthesis. Subjects performed three sit-downs with each prosthesis while we recorded joint angles, forces, and muscle activity from the intact quadricep muscle. Our main outcome measures were weight-bearing symmetry and muscle effort of the intact quadricep muscle. We performed paired t-tests on these outcome measures to test for significant differences between passive and powered prostheses. Results We found that the average weight-bearing symmetry improved by 42.1% when subjects sat down with the powered prosthesis compared to their passive prostheses. This difference was significant (p = 0.0012), and every subject’s weight-bearing symmetry improved when using the powered prosthesis. Although the intact quadricep muscle contraction differed in shape, neither the integral nor the peak of the signal was significantly different between conditions (integral p > 0.01, peak p > 0.01). Conclusions In this study, we found that a powered knee-ankle prosthesis significantly improved weight-bearing symmetry during sit-down compared to passive prostheses. However, we did not observe a corresponding decrease in intact-limb muscle effort. These results indicate that powered prosthetic devices have the potential to improve balance during sit-down for individuals with above-knee amputation and provide insight for future development of powered prosthetics.more » « less
-
Challenges associated with current prosthetic technologies limit the quality of life of lower-limb amputees. Passive prostheses lead amputees to walk slower, use more energy, fall more often, and modify their gait patterns to compensate for the prosthesis' lack of net-positive mechanical energy. Robotic prostheses can provide mechanical energy, but may also introduce challenges through controller design. Fortunately, talented researchers are studying how to best control robotic leg prostheses, but the time and resources required to develop prosthetic hardware has limited their potential impact. Even after research is completed, comparison of results is confounded by the use of different, researcher-specific hardware. To address these issues, we have developed the Open-source Leg (OSL): a scalable robotic knee/ankle prosthesis intended to foster investigations of control strategies. This paper introduces the design goals, transmission selection, hardware implementation, and initial control benchmarks for the OSL. The OSL provides a common hardware platform for comparison of control strategies, lowers the barrier to entry for prosthesis research, and enables testing within the lab, community, and at home.more » « less