skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Array testing for multiplex assays
Summary Group testing involves pooling individual specimens (e.g., blood, urine, swabs, etc.) and testing the pools for the presence of disease. When the proportion of diseased individuals is small, group testing can greatly reduce the number of tests needed to screen a population. Statistical research in group testing has traditionally focused on applications for a single disease. However, blood service organizations and large-scale disease surveillance programs are increasingly moving towards the use of multiplex assays, which measure multiple disease biomarkers at once. Tebbs and others (2013, Two-stage hierarchical group testing for multiple infections with application to the Infertility Prevention Project. Biometrics69, 1064–1073) and Hou and others (2017, Hierarchical group testing for multiple infections. Biometrics73, 656–665) were the first to examine hierarchical group testing case identification procedures for multiple diseases. In this article, we propose new non-hierarchical procedures which utilize two-dimensional arrays. We derive closed-form expressions for the expected number of tests per individual and classification accuracy probabilities and show that array testing can be more efficient than hierarchical procedures when screening individuals for multiple diseases at once. We illustrate the potential of using array testing in the detection of chlamydia and gonorrhea for a statewide screening program in Iowa. Finally, we describe an R/Shiny application that will help practitioners identify the best multiple-disease case identification algorithm.  more » « less
Award ID(s):
1826715
PAR ID:
10228696
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Biostatistics
Volume:
21
Issue:
3
ISSN:
1468-4357
Page Range / eLocation ID:
417 to 431
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When screening for infectious diseases, group testing has proven to be a cost efficient alternative to individual level testing. Cost savings are realized by testing pools of individual specimens (eg, blood, urine, saliva, and so on) rather than by testing the specimens separately. However, a common concern that arises in group testing is the so‐called “dilution effect.” This occurs if the signal from a positive individual's specimen is diluted past an assay's threshold of detection when it is pooled with multiple negative specimens. In this article, we propose a new statistical framework for group testing data that merges estimation and case identification, which are often treated separately in the literature. Our approach considers analyzing continuous biomarker levels (eg, antibody levels, antigen concentrations, and so on) from pooled samples to estimate both a binary regression model for the probability of disease and the biomarker distributions for cases and controls. To increase case identification accuracy, we then show how estimates of the biomarker distributions can be used to select diagnostic thresholds on a pool‐by‐pool basis. Our proposals are evaluated through numerical studies and are illustrated using hepatitis B virus data collected on a prison population in Ireland. 
    more » « less
  2. Group testing is a technique that can reduce the number of tests needed to identify infected members in a population, by pooling together multiple diagnostic samples. Despite the variety and importance of prior results, traditional work on group testing has typically assumed independent infections. However, contagious diseases among humans, like SARS-CoV-2, have an important characteristic: infections are governed by community spread, and are therefore correlated. In this paper, we explore this observation and we argue that taking into account the community structure when testing can lead to significant savings in terms of the number of tests required to guarantee a given identification accuracy. To show that, we start with a simplistic (yet practical) infection model, where the entire population is organized in (possibly overlapping) communities and the infection probability of an individual depends on the communities (s)he participates in. Given this model, we compute new lower bounds on the number of tests for zero-error identification and design community-aware group testing algorithms that can be optimal under assumptions. Finally, we demonstrate significant benefits over traditional, community-agnostic group testing via simulations using both noiseless and noisy tests 
    more » « less
  3. High‐volume testing of clinical specimens for sexually transmitted diseases is performed frequently by a process known as group testing. This algorithmic process involves testing portions of specimens from separate individuals together as one unit (or “group”) to detect diseases. Retesting is performed on groups that test positively in order to differentiate between positive and negative individual specimens. The overall goal is to use the least number of tests possible across all individuals without sacrificing diagnostic accuracy. One of the most efficient group testing algorithms is array testing. In its simplest form, specimens are arranged into a grid‐like structure so that row and column groups can be formed. Positive‐testing rows/columns indicate which specimens to retest. With the growing use of multiplex assays, the increasing number of diseases tested by these assays, and the availability of subject‐specific risk information, opportunities exist to make this testing process even more efficient. We propose specific specimen arrangements within an array that can reduce the number of retests needed when compared with other array testing algorithms. We examine how to calculate operating characteristics, including the expected number of tests and the SD for the number of tests, and then subsequently find a best arrangement. Our methods are illustrated for chlamydia and gonorrhea detection with the Aptima Combo 2 Assay. We also provide R functions to make our research accessible to laboratories. 
    more » « less
  4. Summary In screening applications involving low-prevalence diseases, pooling specimens (e.g., urine, blood, swabs, etc.) through group testing can be far more cost effective than testing specimens individually. Estimation is a common goal in such applications and typically involves modeling the probability of disease as a function of available covariates. In recent years, several authors have developed regression methods to accommodate the complex structure of group testing data but often under the assumption that covariate effects are linear. Although linearity is a reasonable assumption in some applications, it can lead to model misspecification and biased inference in others. To offer a more flexible framework, we propose a Bayesian generalized additive regression approach to model the individual-level probability of disease with potentially misclassified group testing data. Our approach can be used to analyze data arising from any group testing protocol with the goal of estimating multiple unknown smooth functions of covariates, standard linear effects for other covariates, and assay classification accuracy probabilities. We illustrate the methods in this article using group testing data on chlamydia infection in Iowa. 
    more » « less
  5. Abstract BackgroundPathogenic infections pose a significant threat to global health, affecting millions of people every year and presenting substantial challenges to healthcare systems worldwide. Efficient and timely testing plays a critical role in disease control and transmission prevention. Group testing is a well-established method for reducing the number of tests needed to screen large populations when the disease prevalence is low. However, it does not fully utilize the quantitative information provided by qPCR methods, nor is it able to accommodate a wide range of pathogen loads. ResultsTo address these issues, we introduce a novel adaptive semi-quantitative group testing (SQGT) scheme to efficiently screen populations via two-stage qPCR testing. The SQGT method quantizes cycle threshold (Ct) values into multiple bins, leveraging the information from the first stage of screening to improve the detection sensitivity. DynamicCtthreshold adjustments mitigate dilution effects and enhance test accuracy. Comparisons with traditional binary outcome GT methods show that SQGT reduces the number of tests by 24% on the only complete real-world qPCR group testing dataset from Israel, while maintaining a negligible false negative rate. ConclusionIn conclusion, our adaptive SQGT approach, utilizing qPCR data and dynamic threshold adjustments, offers a promising solution for efficient population screening. With a reduction in the number of tests and minimal false negatives, SQGT holds potential to enhance disease control and testing strategies on a global scale. 
    more » « less