skip to main content


Title: Recent Advances in the Synthesis of Polymer-Grafted Low-K and High-K Nanoparticles for Dielectric and Electronic Applications
The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the ”grafting from” and ”grafting to” approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented.  more » « less
Award ID(s):
1900692
PAR ID:
10228810
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Molecules
Volume:
26
Issue:
10
ISSN:
1420-3049
Page Range / eLocation ID:
2942
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High‐energy‐density storage devices play a major role in modern electronics from traditional lithium‐ion batteries to supercapacitors for a variety of applications from rechargeable devices to advanced military equipment. Despite the mass adoption of polymer capacitors, their application is limited by their low energy densities and low‐temperature tolerance. Polymer nanocomposites based on 2D nanomaterials have superior capacitive energy densities, higher thermal stabilities, and higher mechanical strength as compared to the pristine polymers and nanocomposites based on 0D or 1D nanomaterials, thus making them ideal for high‐energy‐density dielectric energy storage applications. Here, the recent advances in 2D‐nanomaterial‐based nanocomposites and their implications for energy storage applications are reviewed. Nanocomposites based on conducting 2D nanofillers such as graphene, reduced graphene oxide, MXenes, semiconducting 2D nanofillers including transition metal dichalcogenides such as MoS2, dielectric 2D nanofillers including hBN, Mica, Al2O3, TiO2, Ca2Nb3O10and MMT, and their effects on permittivity, dielectric strength, capacitive energy density, efficiency, thermal stability, and the mechanical strength, are discussed. Also, the theory and machine‐learning‐guided design of polymer 2D nanomaterial composites is learnt and the challenges and opportunities for developing ultrahigh‐capacitive‐energy‐density devices based on these nanofiller polymer composites are presented.

     
    more » « less
  2. Grafting polymer chains to the surface of nanoparticles overcomes the challenge of nanoparticle dispersion within nanocomposites and establishes high-volume fractions that are found to enable enhanced material mechanical properties. This study utilizes coarse-grained molecular dynamics simulations to quantify how the shear modulus of polymer-grafted nanoparticle (PGN) systems in their glassy state depends on parameters such as strain rate, nanoparticle size, grafting density, and chain length. The results are interpreted through further analysis of the dynamics of chain conformations and volume fraction arguments. The volume fraction of nanoparticles is found to be the most influential variable in deciding the shear modulus of PGN systems. A simple rule of mixture is utilized to express the monotonic dependence of shear modulus on the volume fraction of nanoparticles. Due to the reinforcing effect of nanoparticles, shortening the grafted chains results in a higher shear modulus in PGNs, which is not seen in linear systems. These results offer timely insight into calibrating molecular design parameters for achieving the desired mechanical properties in PGNs.

     
    more » « less
  3. Both the dispersion state of nanoparticles (NPs) within polymer nanocomposites (PNCs) and the dynamical state of the polymer altered by the presence of the NP/polymer interfaces have a strong impact on the macroscopic properties of PNCs. In particular, mechanical properties are strongly affected by percolation of hard phases, which may be NP networks, dynamically modified polymer regions, or combinations of both. In this article, the impact on dispersion and dynamics of surface modification of the NPs by short monomethoxysilanes with eight carbons in the alkyl part (C8) is studied. As a function of grafting density and particle content, polymer dynamics is followed by broadband dielectric spectroscopy and analyzed by an interfacial layer model, whereas the particle dispersion is investigated by small-angle X-ray scattering and analyzed by reverse Monte Carlo simulations. NP dispersions are found to be destabilized only at the highest grafting. The interfacial layer formalism allows the clear identification of the volume fraction of interfacial polymer, with its characteristic time. The strongest dynamical slow-down in the polymer is found for unmodified NPs, while grafting weakens this effect progressively. The combination of all three techniques enables a unique measurement of the true thickness of the interfacial layer, which is ca. 5 nm. Finally, the comparison between longer (C18) and shorter (C8) grafts provides unprecedented insight into the efficacy and tunability of surface modification. It is shown that C8-grafting allows for a more progressive tuning, which goes beyond a pure mass effect. 
    more » « less
  4. Grafting polymers to nanoparticle surfaces influences properties from the conformation of the polymer chains to the dispersion and assembly of nanoparticles within a polymeric material. Recently, a small body of work has begun to address the question of how grafting polymers to a nanoparticle surface impacts chain dynamics, and the resulting physical properties of a material. This Review discusses recent work that characterizes the structure and dynamics of polymers that are grafted to nanoparticles and opportunities for future research. Starting from the case of a single polymer chain attached to a nanoparticle core, this Review follows the structure of the chains as grafting density increases, and how this structure slows relaxation of polymer chains and affects macroscopic material properties. 
    more » « less
  5. Abstract Barium titanate (BTO) is a ferroelectric material used in capacitors because of its high bulk dielectric constant. However, the impact of the size of BTO on its dielectric constant is not yet fully understood and is highly contested. Here, we present an investigation into the dielectric constant of BTO nanoparticles with diameters ranging between 50 and 500 nm. BTO nanoparticles were incorporated into acrylonitrile butadiene styrene and injection molded into parallel plate capacitors, which were used to determine nanocomposite dielectric constants. The dielectric constants of BTO nanoparticles were obtained by combining experimental measurements with computational results from COMSOL simulations of ABS-matrix nanocomposites containing BTO. The dielectric constant of BTO was observed to be relatively constant at nanoparticle diameters as small as 200 nm but sharply declined at smaller nanoparticle sizes. These results will be useful in the development of improved energy storage and power conditioning systems utilizing BTO nanoparticles. Graphical abstract 
    more » « less