skip to main content

Title: Modeling nanoparticle charge distribution in the afterglow of non-thermal plasmas and comparison with measurements
Particle charging in the afterglows of non-thermal plasmas typically take place in a non-neutral space charge environment. We model the same by incorporating particle-ion collision rate constant models, developed in prior work by analyzing particle-ion trajectories calculated using Langevin Dynamics simulations, into species transport equations for ions, electrons and charged particles in the afterglow. A scaling analysis of particle charging and additional Langevin Dynamics calculations of the particle-ion collision rate constant are presented to extend the range of applicability to ion electrostatic to thermal energy ratios of 300 and diffusive Knudsen number (that scales inversely with gas pressure) up to 2000. The developed collision rate constant models are first validated by comparing predictions of particle charge against measured values in a stationary, non-thermal DC plasma from past PK-4 campaigns published in Phys. Rev. Lett. 93(8): 085001 and Phys. Rev. E 72(1): 016406). The comparisons reveal excellent agreement within ±35% for particles of radius 0.6,1.0,1.3 μm in the gas pressure range of ~20-150 Pa. The experiments to probe particle charge distributions by Sharma et al. (J. Physics D: Appl. Phys. 53(24): 245204) are modeled using the validated particle-ion collision rate constant models and the calculated charge fractions are compared with measurements. The comparisons reveal that the ion/electron concentration and gas temperature in the afterglow critically influence the particle charge and the predictions are generally in qualitative agreement with the measurements. Along with critical assessment of the modeling assumptions, several recommendations are presented for future experimental design to probe charging in afterglows.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of physics
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Particle shape strongly influences the diffusion charging of aerosol particles exposed to bipolar/unipolar ions and accurate modeling is needed to predict the charge distribution of non-spherical particles. A prior particle-ion collision kernel β_i model including Coulombic and image potential interactions for spherical particles is generalized for arbitrary shapes following a scaling approach that uses a continuum and free molecular particle length scale and Langevin dynamics simulations of non-spherical particle-ion collisions for attractive Coulomb-image potential interactions. This extended β_i model for collisions between unlike charged particle-ion (bipolar charging) and like charged particle-ion (unipolar charging) is validated by comparing against published experimental data of bipolar charge distributions for diverse shapes. Comparison to the bipolar charging data for spherical particles shows good agreement in air, argon, and nitrogen, while also demonstrating high accuracy in predicting charge states up to ±6. Comparisons to the data for fractal aggregates reveal that the LD-based β_i model predicts within overall ±30% without any systematic bias. The mean charge on linear chain aggregates and charge fractions on cylindrical particles is found to be in good agreement with the measurements (~±20% overall). The comparison with experimental results supports the use of LD-based diffusion charging models to predict the bipolar and unipolar charge distribution of arbitrary shaped aerosol particles for a wide range of particle size, and gas temperature, pressure. The presented β_i model is valid for perfectly conducting particles and in the absence of external electric fields; these simplifications need to be addressed in future work on particle charging. 
    more » « less
  2. Based on the prior work of Chahl and Gopalakrishnan (2019) to infer particle-ion collision time distributions using a Langevin Dynamics (LD) approach, we develop a model for the non-dimensional diffusion charging collision kernel β_i or H that is applicable for 0≤Ψ_E≤60,0≤Ψ_I/Ψ_E ≤1,Kn_D≤2000 (defined in the main text). The developed model for β_i for attractive Coulomb and image potential interactions, along with the model for β_i for repulsive Coulomb and image potential interactions from Gopalakrishnan et al. (2013b), is tested against published diffusion charging experimental data. Current state of the art charging models, Fuchs (1963) and Wiedensohler (1988) regression for bipolar charging, are also evaluated and discussed. Comparisons reveal that the LD-based model accurately describes unipolar fractions for 10 – 100 nm particles measured in air (Adachi et al., 1985), nitrogen and argon but not in helium (Adachi et al., 1987). Fuchs model and the LD-based model yield similar predictions in the experimental conditions considered, except in helium. In the case of bipolar charging, the LD-based model captures the experimental trends quantitatively (within ±20%) across the entire size range of 4 – 40 nm producing superior agreement than Wiedensohler’s regression. The latter systematically underpredicts charge fraction below ~20 nm in air (by up to 40%) for the data presented in Adachi et al. (1985). Comparison with the data of Gopalakrishnan et al. (2015), obtained in UHP air along with measurements of the entire ion mass-mobility distribution, shows excellent agreement with the predictions of the LD-based model. This demonstrates the capability to accommodate arbitrary ion populations in any background gas, when such data is available. Wiedensohler’s regression, derived for bipolar charging in air using average ion mass-mobility, also describes the data reasonably well in the conditions examined. However, both models failed to capture the fraction of singly and doubly charged particles in carbon dioxide warranting further investigation. 
    more » « less
  3. In this computational study, we describe a self-consistent trajectory simulation approach to capture the effect of neutral gas pressure on ion–ion mutual neutralization (MN) reactions. The electron transfer probability estimated using Landau–Zener (LZ) transition state theory is incorporated into classical trajectory simulations to elicit predictions of MN cross sections in vacuum and rate constants at finite neutral gas pressures. Electronic structure calculations with multireference configuration interaction and large correlation consistent basis sets are used to derive inputs to the LZ theory. The key advance of our trajectory simulation approach is the inclusion of the effect of ion-neutral interactions on MN using a Langevin representation of the effect of background gas on ion transport. For H+ − H− and Li+ − H(D)−, our approach quantitatively agrees with measured speed-dependent cross sections for up to ∼105 m/s. For the ion pair Ne+ − Cl−, our predictions of the MN rate constant at ∼1 Torr are a factor of ∼2 to 3 higher than the experimentally measured value. Similarly, for Xe+ − F− in the pressure range of ∼20 000–80 000 Pa, our predictions of the MN rate constant are ∼20% lower but are in excellent qualitative agreement with experimental data. The paradigm of using trajectory simulations to self-consistently capture the effect of gas pressure on MN reactions advanced here provides avenues for the inclusion of additional nonclassical effects in future work.

    more » « less
  4. In a recent paper (Zhao et al., Phys Rev X, 2022, 12: 031,021), we reported experimental observations of “ultrastable” states in a shear-jammed granular system subjected to small-amplitude cyclic shear. In such states, all the particle positions and contact forces are reproduced after each shear cycle so that a strobed image of the stresses and particle positions appears static. In the present work, we report further analyses of data from those experiments to characterize both global and local responses of ultrastable states within a shear cycle, not just the strobed dynamics. We find that ultrastable states follow a power-law relation between shear modulus and pressure with an exponentβ≈ 0.5, reminiscent of critical scaling laws near jamming. We also examine the evolution of contact forces measured using photoelasticimetry. We find that there are two types of contacts: non-persistent contacts that reversibly open and close; and persistent contacts that never open and display no measurable sliding. We show that the non-persistent contacts make a non-negligible contribution to the emergent shear modulus. We also analyze the spatial correlations of the stress tensor and compare them to the predictions of a recent theory of the emergent elasticity of granular solids, the Vector Charge Theory of Granular mechanics and dynamics (VCTG) (Nampoothiri et al., Phys Rev Lett, 2020, 125: 118,002). We show that our experimental results can be fit well by VCTG, assuming uniaxial symmetry of the contact networks. The fits reveal that the response of the ultrastable states to additional applied stress is substantially more isotropic than that of the original shear-jammed states. Our results provide important insight into the mechanical properties of frictional granular solids created by shear.

    more » « less
  5. Abstract

    A method is demonstrated for controlling the charge of a dust particle in a plasma afterglow, allowing a wider range of outcomes than an earlier method. As in the earlier method, the dust particles are located near an electrode that has a DC voltage during the afterglow. Here, that DC voltage is switched to a positive value at a specified delay time, instead of maintaining a constant negative voltage as in the earlier method. Adjusting the timing of this switching allows one to control the residual charge gradually over a wide range that includes both negative and positive values of charge. For comparison, only positive residual charges were attained in the earlier method. We were able to adjust the residual charge from about −2000 eto +10 000 e, for our experimental parameters (8.35 µm particles, 8 mTorr argon pressure, and a DC voltage that was switched from −150 V to +125 V within the first two milliseconds of the afterglow). The plasma conditions near the dust particles changed from ion-rich to electron-rich, when the electrode was switched from cathodic to anodic. Making this change at a specified time, as the electrons and ions decay in the afterglow, provides this control capability. These results also give insight into the time development of a dust particle’s charge in the afterglow, on a sub-millisecond time scale.

    more » « less