skip to main content

This content will become publicly available on September 21, 2024

Title: Neutral gas pressure dependence of ion–ion mutual neutralization rate constants using Landau–Zener theory coupled with trajectory simulations

In this computational study, we describe a self-consistent trajectory simulation approach to capture the effect of neutral gas pressure on ion–ion mutual neutralization (MN) reactions. The electron transfer probability estimated using Landau–Zener (LZ) transition state theory is incorporated into classical trajectory simulations to elicit predictions of MN cross sections in vacuum and rate constants at finite neutral gas pressures. Electronic structure calculations with multireference configuration interaction and large correlation consistent basis sets are used to derive inputs to the LZ theory. The key advance of our trajectory simulation approach is the inclusion of the effect of ion-neutral interactions on MN using a Langevin representation of the effect of background gas on ion transport. For H+ − H− and Li+ − H(D)−, our approach quantitatively agrees with measured speed-dependent cross sections for up to ∼105 m/s. For the ion pair Ne+ − Cl−, our predictions of the MN rate constant at ∼1 Torr are a factor of ∼2 to 3 higher than the experimentally measured value. Similarly, for Xe+ − F− in the pressure range of ∼20 000–80 000 Pa, our predictions of the MN rate constant are ∼20% lower but are in excellent qualitative agreement with experimental data. The paradigm of using trajectory simulations to self-consistently capture the effect of gas pressure on MN reactions advanced here provides avenues for the inclusion of additional nonclassical effects in future work.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Date Published:
Journal Name:
The Journal of Chemical Physics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Particle charging in the afterglows of non-thermal plasmas typically take place in a non-neutral space charge environment. We model the same by incorporating particle-ion collision rate constant models, developed in prior work by analyzing particle-ion trajectories calculated using Langevin Dynamics simulations, into species transport equations for ions, electrons and charged particles in the afterglow. A scaling analysis of particle charging and additional Langevin Dynamics calculations of the particle-ion collision rate constant are presented to extend the range of applicability to ion electrostatic to thermal energy ratios of 300 and diffusive Knudsen number (that scales inversely with gas pressure) up to 2000. The developed collision rate constant models are first validated by comparing predictions of particle charge against measured values in a stationary, non-thermal DC plasma from past PK-4 campaigns published in Phys. Rev. Lett. 93(8): 085001 and Phys. Rev. E 72(1): 016406). The comparisons reveal excellent agreement within ±35% for particles of radius 0.6,1.0,1.3 μm in the gas pressure range of ~20-150 Pa. The experiments to probe particle charge distributions by Sharma et al. (J. Physics D: Appl. Phys. 53(24): 245204) are modeled using the validated particle-ion collision rate constant models and the calculated charge fractions are compared with measurements. The comparisons reveal that the ion/electron concentration and gas temperature in the afterglow critically influence the particle charge and the predictions are generally in qualitative agreement with the measurements. Along with critical assessment of the modeling assumptions, several recommendations are presented for future experimental design to probe charging in afterglows. 
    more » « less
  2. We present trajectory simulation-based modeling to capture the interactions between ions and charged grains in dusty or complex plasmas. Our study is motivated by the need for a self-consistent and experimentally validated approach for accurately calculating the ion drag force and grain charge that determine grain collective behavior in plasmas. We implement Langevin dynamics in a computationally efficient predictor–corrector approach to capture multiscale ion and grain dynamics. Predictions of grain velocity, grain charge, and ion drag force are compared with prior measurements to assess our approach. The comparisons reveal excellent agreement to within ±20% between predicted and measured grain velocities [Yaroshenko et al., Phys. Plasmas 12, 093503 (2005) and Khrapak et al., Europhys. Lett. 97, 35001 (2012)] for 0.64, 1.25 μm grains at ∼20−500 Pa. Comparisons with the measured grain charge [Khrapak et al., Phys. Rev. E 72, 016406 (2005)] under similar conditions reveal agreement to within ∼20% as well. Measurements of the ion drag force [Hirt et al., Phys. Plasmas 11, 5690 (2004); IEEE Trans. Plasma Sci. 32, 582 (2004)] are used to assess the viability of the presented approach to calculate the ion drag force experienced by grains exposed to ion beams of well-defined energy. Excellent agreement between calculations and measurements is obtained for beam energies >10 eV, and the overprediction below 10 eV is attributed to the neglect of charge exchange collisions in our modeling. Along with critical assessments of our approach, suggestions for future experimental design to probe charging of and momentum transfer onto grains that capture the effect of space charge concentration and external fields are outlined.

    more » « less
  3. Abstract

    Non-equilibrium inductively coupled plasmas (ICPs) operating in hydrogen are of significant interest for applications including large-area materials processing. Increasing control of spatial gas heating, which drives the formation of neutral species density gradients and the rate of gas-temperature-dependent reactions, is critical. In this study, we use 2D fluid-kinetic simulations with the Hybrid Plasma Equipment Model to investigate the spatially resolved production of atomic hydrogen in a low-pressure planar ICP operating in pure hydrogen (10–20 Pa or 0.075–0.15 Torr, 300 W). The reaction set incorporates self-consistent calculation of the spatially resolved gas temperature and 14 vibrationally excited states. We find that the formation of neutral-gas density gradients, which result from spatially non-uniform electrical power deposition at constant pressure, can drive significant variations in the vibrational distribution function and density of atomic hydrogen when gas heating is spatially resolved. This highlights the significance of spatial gas heating on the production of reactive species in relatively high-power-density plasma processing sources.

    more » « less
  4. We report absolute integral cross section (ICS) measurements using a dual-source merged-fast-beams apparatus to study the titular reactions over the relative translational energy range of E r ∼ 0.01–10 eV. We used photodetachment of C − to produce a pure beam of atomic C in the ground electronic 3 P term, with statistically populated fine-structure levels. The H 2 + and D 2 + were formed in an electron impact ionization source, with well known vibrational and rotational distributions. The experimental work is complemented by a theoretical study of the CH 2 + electronic system in the reactant and product channels, which helps to clarify the possible reaction mechanisms underlying the ICS measurements. Our measurements provide evidence that the reactions are barrierless and exoergic. They also indicate the apparent absence of an intermolecular isotope effect, to within the total experimental uncertainties. Capture models, taking into account either the charge-induced dipole interaction potential or the combined charge-quadrupole and charge-induced dipole interaction potentials, produce reaction cross sections that lie a factor of ∼4 above the experimental results. Based on our theoretical study, we hypothesize that the reaction is most likely to proceed adiabatically through the 1 4 A′ and 1 4 A′′ states of CH 2 + via the reaction C( 3 P) + H 2 + ( 2 Σ+g) → CH + ( 3 Π) + H( 2 S). We also hypothesize that at low collision energies only H 2 + ( v ≤ 2) and D 2 + ( v ≤ 3) contribute to the titular reactions, due to the onset of dissociative charge transfer for higher vibrational v levels. Incorporating these assumptions into the capture models brings them into better agreement with the experimental results. Still, for energies ≲0.1 eV where capture models are most relevant, the modified charge-induced dipole model yields reaction cross sections with an incorrect energy dependence and lying ∼10% below the experimental results. The capture cross section obtained from the combined charge-quadrupole and charge-induced dipole model better matches the measured energy dependence but lies ∼30–50% above the experimental results. These findings provide important guidance for future quasiclassical trajectory and quantum mechanical treatments of this reaction. 
    more » « less

    Cross-sections and rate coefficients for rovibronic excitation of the CH+ ion by electron impact and dissociative recombination of CH+ with electrons are evaluated using a theoretical approach combining an R-matrix method and molecular quantum defect theory. The method has been developed and tested, comparing the theoretical results with the data from the recent Cryogenic Storage Ring experiment. The obtained cross-sections and rate coefficients evaluated for temperatures from 1 to 10 000 K could be used for plasma modelling in the interpretation of astrophysical observations and also in the technological applications where the molecular hydrocarbon plasma is present.

    more » « less