skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: iCAAP: information-Centric network Architecture for Application-specific Prioritization in Smart Grid
The smart grid is equipped with bi-directional information flow between its devices, aiming at automation, improved stability, resilience, and robust security. However, enabling effective and reliable communication in a smart grid is a challenging task. The majority of the proposed networking architectures fall short in addressing the key aspects of smart grid communication, including device heterogeneity, protocols and standards interoperability, and particularly application qualityof-service (QoS) requirements. In this paper, we propose iCAAP, an information-centric, QoSaware network architecture that aims to satisfy the low latency, high bandwidth, and high reliability requirements of smart grid communications. In iCAAP, we categorize smart grid traffic (emanating from diverse applications) into three priority classes to enable preferential treatment of traffic flows. Our simulation results demonstrate the higher scalability of iCAAP in satisfying the stringent requirements of high priority traffic compared to the state-of-the-art.  more » « less
Award ID(s):
1757207
PAR ID:
10228884
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The smart grid is equipped with bi-directional information flow between its devices, aiming at automation, improved stability, resilience, and robust security. However, enabling effective and reliable communication in a smart grid is a challenging task. The majority of the proposed networking architectures fall short in addressing the key aspects of smart grid communication, including device heterogeneity, protocols and standards interoperability, and particularly application quality- of-service (QoS) requirements. In this paper, we propose iCAAP, an information-centric, QoS-aware network architecture that aims to satisfy the low latency, high bandwidth, and high reliability requirements of smart grid communications. In iCAAP, we categorize smart grid traffic (emanating from diverse applications) into three priority classes to enable preferential treatment of traffic flows. Our simulation results demonstrate the higher scalability of iCAAP in satisfying the stringent requirements of high priority traffic compared to the state-of-the-art. 
    more » « less
  2. With the increasing demand for wireless connectivity, ensuring the efficient coexistence of multiple radio access technologies in shared unlicensed spectrum has become an important issue. This paper focuses on optimizing Medium Access Control (MAC) parameters to enhance the coexistence of 5G New Radio in Unlicensed Spectrum (NR-U) and Wi-Fi networks operating in unlicensed spectrum with multiple priority classes of traffic that may have varying quality-of-service (QoS) requirements. In this context, we tackle the coexistence parameter management problem by introducing a QoS-aware State-Augmented Learnable (QaSAL) framework, designed to improve network performance under various traffic conditions. Our approach augments the state representation with constraint information, enabling dynamic policy adjustments to enforce QoS requirements effectively. Simulation results validate the effectiveness of QaSAL in managing NR-U and Wi-Fi coexistence, demonstrating improved channel access fairness while satisfying a latency constraint for high-priority traffic. 
    more » « less
  3. Integration of complex and high-speed electronic components in the state of art electric power system enhances the need for improved security infrastructure and resilience against invasive and non-invasive attacks on the smart grid. A modern smart grid system integrates a variety of instruments and standards to achieve cost-effective and time-effective energy measurement and management. As the fundamental component in the smart grid, the smart meter supports real-time monitoring, automatic control, and high-speed communication along with power consumption recording. However, the wide use of smart meters also increases privacy and security concerns. In this paper, we demonstrate the vulnerability of side-channel attacks on secure communication in smart grids for software-based and hardware-based implementations. 
    more » « less
  4. Securing cyber-physical systems (CPS) like the Smart Grid against cyber attacks is making it imperative for the system defenders to plan for investing in the cybersecurity resources of cyber-physical critical infrastructure. Given the constraint of limited resources that can be invested in the cyber layer of the cyber-physical smart grid, optimal allocation of these resources has become a priority for the defenders of the grid. This paper proposes a methodology for optimizing the allocation of resources for the cybersecurity infrastructure in a smart grid using attack-defense trees and game theory. The proposed methodology uses attack-defense trees (ADTs) for analyzing the cyber-attack paths (attacker strategies) within the grid and possible defense strategies to prevent those attacks. The attack-defense strategy space (ADSS) provides a comprehensive list of interactions between the attacker and the defender of the grid. The proposed methodology uses the ADSS from the ADT analysis for a game-theoretic formulation (GTF) of attacker-defender interaction. The GTF allows us to obtain strategies for the defender in order to optimize cybersecurity resource allocation in the smart grid. The implementation of the proposed methodology is validated using a synthetic smart grid model equipped with cyber and physical components depicting the feasibility of the methodology for real-world implementation. 
    more » « less
  5. Smart grid systems are characterized by high complexity due to interactions between a traditional passive network and active power electronic components, coupled using communication links. Additionally, automation and information technology plays an important role in order to operate and optimize such cyber-physical energy systems with a high(er) penetration of fluctuating renewable generation and controllable loads. As a result of these developments the validation on the system level becomes much more important during the whole engineering and deployment process, today. In earlier development stages and for larger system configurations laboratory-based testing is not always an option. Due to recent developments, simulation-based approaches are now an appropriate tool to support the development, implementation, and roll-out of smart grid solutions. This paper discusses the current state of simulation-based approaches and outlines the necessary future research and development directions in the domain of power and energy systems. 
    more » « less