skip to main content


Title: Distributed Data-Gathering and -Processing in Smart Cities: An Information-Centric Approach
The technological advancements along with the proliferation of smart and connected devices (things) motivated the exploration of the creation of smart cities aimed at improving the quality of life, economic growth, and efficient resource utilization. Some recent initiatives defined a smart city network as the interconnection of the existing independent and heterogeneous networks and the infrastructure. However, considering the heterogeneity of the devices, communication technologies, network protocols, and platforms the interoperability of these networks is a challenge requiring more attention. In this paper, we propose the design of a novel Information-Centric Smart City architecture (iSmart), focusing on the demand of the future applications, such as efficient machine-to-machine communication, low latency computation offloading, large data communication requirements, andadvanced security. In designing iSmart, we use the Named-Data Networking (NDN) architecture as the underlyingcommunication substrate to promote semantics-based communication and achieve seamless compute/data sharing.  more » « less
Award ID(s):
1757207
NSF-PAR ID:
10112837
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Open journal of internet of things
Volume:
5
Issue:
1
ISSN:
2364-7108
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article presents a novel hardware-assisted distributed ledger-based solution for simultaneous device and data security in smart healthcare. This article presents a novel architecture that integrates PUF, blockchain, and Tangle for Security-by-Design (SbD) of healthcare cyber–physical systems (H-CPSs). Healthcare systems around the world have undergone massive technological transformation and have seen growing adoption with the advancement of Internet-of-Medical Things (IoMT). The technological transformation of healthcare systems to telemedicine, e-health, connected health, and remote health is being made possible with the sophisticated integration of IoMT with machine learning, big data, artificial intelligence (AI), and other technologies. As healthcare systems are becoming more accessible and advanced, security and privacy have become pivotal for the smooth integration and functioning of various systems in H-CPSs. In this work, we present a novel approach that integrates PUF with IOTA Tangle and blockchain and works by storing the PUF keys of a patient’s Body Area Network (BAN) inside blockchain to access, store, and share globally. Each patient has a network of smart wearables and a gateway to obtain the physiological sensor data securely. To facilitate communication among various stakeholders in healthcare systems, IOTA Tangle’s Masked Authentication Messaging (MAM) communication protocol has been used, which securely enables patients to communicate, share, and store data on Tangle. The MAM channel works in the restricted mode in the proposed architecture, which can be accessed using the patient’s gateway PUF key. Furthermore, the successful verification of PUF enables patients to securely send and share physiological sensor data from various wearable and implantable medical devices embedded with PUF. Finally, healthcare system entities like physicians, hospital admin networks, and remote monitoring systems can securely establish communication with patients using MAM and retrieve the patient’s BAN PUF keys from the blockchain securely. Our experimental analysis shows that the proposed approach successfully integrates three security primitives, PUF, blockchain, and Tangle, providing decentralized access control and security in H-CPS with minimal energy requirements, data storage, and response time. 
    more » « less
  2. null (Ed.)
    Smart city projects aim to enhance the management of city infrastructure by enabling government entities to monitor, control and maintain infrastructure efficiently through the deployment of Internet-of-things (IoT) devices. However, the financial burden associated with smart city projects is a detriment to prospective smart cities. A noteworthy factor that impacts the cost and sustainability of smart city projects is providing cellular Internet connectivity to IoT devices. In response to this problem, this paper explores the use of public transportation network nodes and mules, such as bus-stops as buses, to facilitate connectivity via device-to-device communication in order to reduce cellular connectivity costs within a smart city. The data mules convey non-urgent data from IoT devices to edge computing hardware, where data can be processed or sent to the cloud. Consequently, this paper focuses on edge node placement in smart cities that opportunistically leverage public transit networks for reducing reliance on and thus costs of cellular connectivity. We introduce an algorithm that selects a set of edge nodes that provides maximal sensor coverage and explore another that selects a set of edge nodes that provide minimal delivery delay within a budget. The algorithms are evaluated for two public transit network data-sets: Chapel Hill, North Carolina and Louisville, Kentucky. Results show that our algorithms consistently outperform edge node placement strategies that rely on traditional centrality metrics (betweenness and in-degree centrality) by over 77% reduction in coverage budget and over 20 minutes reduction in latency. 
    more » « less
  3. More than 150 cellular networks worldwide have rolled out LTE-M (LTE-Machine Type Communication) and/or NB-IoT (Narrow Band Internet of Things) technologies to support massive IoT services such as smart metering and environmental monitoring. Such cellular IoT services share the existing cellular network architecture with non-IoT (e.g., smartphone) ones. When they are newly integrated into the cellular network, new security vulnerabilities may happen from imprudent integration. In this work, we explore the security vulnerabilities of the cellular IoT from both system-integrated and service-integrated aspects. We discover several vulnerabilities spanning cellular standard design defects, network operation slips, and IoT device implementation flaws. Threateningly, they allow an adversary to remotely identify IP addresses and phone numbers assigned to cellular IoT devices, interrupt their power saving services, and launch various attacks, including data/text spamming, battery draining, device hibernation against them. We validate these vulnerabilities over five major cellular IoT carriers in the U.S. and Taiwan using their certified cellular IoT devices. The attack evaluation result shows that the adversary can raise an IoT data bill by up to $226 with less than 120 MB spam traffic, increase an IoT text bill at a rate of $5 per second, and prevent an IoT device from entering/leaving power saving mode; moreover, cellular IoT devices may suffer from denial of IoT services. We finally propose, prototype, and evaluate recommended solutions. 
    more » « less
  4. null (Ed.)
    Smart city projects have the potential to improve the management of environmental and public infrastructure. However, the operational and capital expenditures of smart cities can prevent cities from becoming smarter. A notable factor that influences the cost is providing cellular Internet connectivity to IoT devices. 5G has been proposed as a possible solution, but projections show that 5G will not be able to support the load of billions of IoT devices coming online. To mitigate this, people, vehicles, and other nodes in transportation networks can be exploited to transmit non-urgent data by leveraging device-to-device communication in order to reduce cellular connectivity costs associated with smart city sensors. Hence, this paper addresses cost-effective edge node placement in smart cities that opportunistically leverage public transit networks. We introduce an algorithm that selects a set of edge nodes that provide minimal delivery delay within a budget. The algorithm is evaluated for two public transit network data-sets: Chapel Hill, North Carolina and Louisville, Kentucky and results show that our algorithm outperforms betweeness and in-degree centrality metrics with a reduction in latency of over 20 minutes. 
    more » « less
  5. Communication networks in power systems are a major part of the smart grid paradigm. It enables and facilitates the automation of power grid operation as well as self-healing in contingencies. Such dependencies on communication networks, though, create a roam for cyber-threats. An adversary can launch an attack on the communication network, which in turn reflects on power grid operation. Attacks could be in the form of false data injection into system measurements, flooding the communication channels with unnecessary data, or intercepting messages. Using machine learning-based processing on data gathered from communication networks and the power grid is a promising solution for detecting cyber threats. In this paper, a co-simulation of cyber-security for cross-layer strategy is presented. The advantage of such a framework is the augmentation of valuable data that enhances the detection as well as identification of anomalies in the operation of the power grid. The framework is implemented on the IEEE 118-bus system. The system is constructed in Mininet to simulate a communication network and obtain data for analysis. A distributed three controller software-defined networking (SDN) framework is proposed that utilizes the Open Network Operating System (ONOS) cluster. According to the findings of our suggested architecture, it outperforms a single SDN controller framework by a factor of more than ten times the throughput. This provides for a higher flow of data throughout the network while decreasing congestion caused by a single controller’s processing restrictions. Furthermore, our CECD-AS approach outperforms state-of-the-art physics and machine learning-based techniques in terms of attack classification. The performance of the framework is investigated under various types of communication attacks. 
    more » « less