skip to main content


Title: Intensity uniformity optimization in spatial-light-modulator-based multifocal microscope
Multifocal microscopes (MFMs) are becoming increasingly popular in fluorescence microscopy due to their high speed three-dimensional (3D) imaging capabilities. Conventional MFMs use a fixed fabricated grating as the multifocal grating but these are limited to a restricted wavelength range and a fixed object-plane separation. Spatial light modulators (SLMs) represent an alternative to fabricated gratings due to their real-time programmability, providing complete control over emission wavelength range and object plane separations. However, algorithms commonly used to obtain multifocal grating patterns which provide uniform intensity across the subimages are not directly applicable to SLM-based MFMs due to inherent pixel-to-pixel crosstalk effects present in the SLM chip. We recently developed an in-situ iterative algorithm which generates grating patterns that provide near-uniform illumination of the subimages in SLM-based MFMs. This algorithm is universal across wavelengths, object-plane separations, and SLM manufacturers. As part of our efforts to develop an SLM-based MFM that can respond rapidly to changing experimental parameters, we implement a gradient descent-based optimization method. We evaluate its performance in comparison with a grid search based routine. Experimental results obtained on a custom-made SLM-based MFM indicate that the grid-search optimized grating patterns provide superior subimage intensity uniformity versus the gradient-descent method. These experiments also provide an insight into the energy landscape involved in these optimizations. This study increases the utility of SLM-based MFMs in high-speed imaging.  more » « less
Award ID(s):
1734030
NSF-PAR ID:
10229029
Author(s) / Creator(s):
; ; ;
Editor(s):
Brown, Thomas G.; Wilson, Tony; Waller, Laura
Date Published:
Journal Name:
SPIE BiOS
Volume:
11649
Issue:
Processing XXVIII
Page Range / eLocation ID:
26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Multifocal microscopy enables high-speed three-dimensional (3D) volume imaging by using a multifocal grating in the emission path. This grating is typically designed to afford a uniform illumination of multifocal subimages for a single emission wavelength. Using the same grating for multicolor imaging results in non-uniform subimage intensities in emission wavelengths for which the grating is not designed. This has restricted multifocal microscopy applications for samples having multicolored fluorophores. In this paper, we present a multicolor multifocal microscope implementation which uses a Spatial Light Modulator (SLM) as a single multifocal grating to realize near-uniform multifocal subimage intensities across multiple wavelength emission bands. Using real-time control of an in-situ-optimized SLM implemented as a multifocal grating, we demonstrate multicolor multifocal 3D imaging over three emission bands by imaging multicolored particles as well as Escherichia coli ( E. coli ) interacting with human liver cancer cells, at $$\sim 2.5$$ ∼ 2.5 multicolor 3D volumes per second acquisition speed. Our multicolor multifocal method is adaptable across SLM hardware, emission wavelength band locations and number of emission bands, making it particularly suited for researchers investigating fast processes occurring across a volume where multiple species are involved. 
    more » « less
  2. null (Ed.)
    State-of-the-art seismic imaging techniques treat inversion tasks such as full-waveform inversion (FWI) and least-squares reverse time migration (LSRTM) as partial differential equation-constrained optimization problems. Due to the large-scale nature, gradient-based optimization algorithms are preferred in practice to update the model iteratively. Higher-order methods converge in fewer iterations but often require higher computational costs, more line-search steps, and bigger memory storage. A balance among these aspects has to be considered. We have conducted an evaluation using Anderson acceleration (AA), a popular strategy to speed up the convergence of fixed-point iterations, to accelerate the steepest-descent algorithm, which we innovatively treat as a fixed-point iteration. Independent of the unknown parameter dimensionality, the computational cost of implementing the method can be reduced to an extremely low dimensional least-squares problem. The cost can be further reduced by a low-rank update. We determine the theoretical connections and the differences between AA and other well-known optimization methods such as L-BFGS and the restarted generalized minimal residual method and compare their computational cost and memory requirements. Numerical examples of FWI and LSRTM applied to the Marmousi benchmark demonstrate the acceleration effects of AA. Compared with the steepest-descent method, AA can achieve faster convergence and can provide competitive results with some quasi-Newton methods, making it an attractive optimization strategy for seismic inversion. 
    more » « less
  3. Abstract

    High-contrast imaging has afforded astronomers the opportunity to study light directly emitted by adolescent (tens of megayears) and “proto” (<10 Myr) planets still undergoing formation. Direct detection of these planets is enabled by empirical point-spread function (PSF) modeling and removal algorithms. The computational intensity of such algorithms, as well as their multiplicity of tunable input parameters, has led to the prevalence of ad hoc optimization approaches to high-contrast imaging results. In this work, we present a new, systematic approach to optimization vetted using data of the high-contrast stellar companion HD 142527 B from the Magellan Adaptive Optics Giant Accreting Protoplanet Survey (GAPlanetS). More specifically, we present a grid search technique designed to explore three influential parameters of the PSF subtraction algorithmpyKLIP: annuli, movement, and KL modes. We consider multiple metrics for postprocessed image quality in order to optimally recover at Hα(656 nm) synthetic planets injected into contemporaneous continuum (643 nm) images. These metrics include peak (single-pixel) signal-to-noise ratio (S/N), average (multipixel average) S/N, 5σcontrast, and false-positive fraction. We apply continuum-optimized KLIP reduction parameters to six Hαdirect detections of the low-mass stellar companion HD 142527 B and recover the companion at a range of separations. Relative to a single-informed, nonoptimized set of KLIP parameters applied to all data sets uniformly, our multimetric grid search optimization led to improvements in companion S/N of up to 1.2σ, with an average improvement of 0.6σ. Since many direct imaging detections lie close to the canonical 5σthreshold, even such modest improvements may result in higher yields in future imaging surveys.

     
    more » « less
  4. Many emerging, high-speed, reconfigurable optical systems are limited by routing complexity when producing dynamic, two-dimensional (2D) electric fields. We propose a gradient-based inverse-designed, static phase-mask doublet to generate arbitrary 2D intensity wavefronts using a one-dimensional (1D) intensity spatial light modulator (SLM). We numerically simulate the capability of mapping each point in a 49 element 1D array to a distinct7×<#comment/>72D spatial distribution. Our proposed method will significantly relax the routing complexity of electrical control signals, possibly enabling high-speed, sub-wavelength 2D SLMs leveraging new materials and pixel architectures.

     
    more » « less
  5. Hyperspectral imaging (HSI) is a spectroscopic technique which captures images at a high contrast over a wide range of wavelengths to show pixel specific composition. Traditional uses of HSI include: satellite imagery, food distribution quality control and digital archaeological reconstruction. Our lab has focused on developing applications of HSI fluorescence imaging systems to study molecule-specific detection for rapid cell signaling events or real-time endoscopic screening. Previously, we have developed a prototype spectral light source, using our modified imaging technique, excitationscanning hyperspectral imaging (HIFEX), coupled to a commercial colonoscope for feasibility testing. The 16 wavelength LED array was combined, using a multi-branched solid light guide, to couple to the scope’s optical input. The prototype acquired a spectral scan at near video-rate speeds (~8 fps). The prototype could operate at very rapid wavelength switch speeds, limited to the on/off rates of the LEDs (~10 μs), but imaging speed was limited due to optical transmission losses (~98%) through the solid light guide. Here we present a continuation of our previous work in performing an in-depth analysis of the solid light guide to optimize the optical intensity throughput. The parameters evaluated include: LED intensity input, geometry (branch curvature and combination) and light propagation using outer claddings. Simulations were conducted using a Monte Carlo ray tracing software (TracePro). Results show that transmission within the branched light guide may be optimized through LED focusing lenses, bend radii and smooth tangential branch merges. Future work will test a new fabricated light guide from the optimized model framework. 
    more » « less