In the efforts to generate a less toxic X‐Ray bioimaging contrast agent, a fully organic, radioluminescent nanoparticle system that emits in the near‐infrared (NIR) region when excited with an X‐Ray source is synthesized using a two‐step process. First, red‐emitting nanoparticles are fabricated by the emulsion copolymerization of styrene and propargyl acrylate with anthracene, naphthalimide, and rhodamine B methyl methacrylate derivatives. Subsequently, the nanoparticles are modified with silicon phthalocyanine and indocyanine green derivatives via a copper(I)‐catalyzed azide/alkyne cycloaddition “click” reaction. By coupling an organic scintillator with four Förster resonance energy transfer‐pairing dyes, X‐Ray‐induced, multiple, sequential energy transfer is exploited to convert ionizing radiation from an X‐Ray source into NIR light, which is optimal for biomedical imaging. Proof‐of‐concept imaging studies show that the X‐Ray‐induced indocyanine green fluorescence from the particulate system can be visualized through porcine tissue. Additionally, toxicity studies in human embryonic kidney cells indicate that the particles are nontoxic and applicable
Core/shell nanoparticles composed of a silica core over which a propargyl methacrylate (PMA) shell was polymerized around were synthesized. To employ the shell coating, the surface of the silica nanoparticles (SiNPs) was modified with an alkene-terminated organometallic silane linker that allowed for the covalent attachment of a poly(propargyl methacrylate) (pPMA) shell. The alkyne groups resulting from the pPMA shell were utilized in copper(I)-catalyzed azide/alkyne cycloaddition (CuAAC) reactions to attach azide-modified Förster resonance energy transfer (FRET) pairs of naphthalimide (azNap), rhodamine B (azRhod), and silicon phthalocyanine (azSiPc) derivatives to the shell surface. The luminescence of the system was manipulated by the covalent attachment of one, two, or three of the fluorophores resulting in no energy transfer, one energy transfer, or two energy transfers, respectively. When all three fluorophores were attached to the core/shell particles, an excitation of azNap with a wavelength of 400 nm resulted in the sequential energy transfer between two FRET pairs and the sole emission of azSiPc at 670 nm. These particles may have applications as bioimaging probes as their luminescence is easily detected using fluorescence microscopy.
more » « less- Award ID(s):
- 1632881
- PAR ID:
- 10229087
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optical Materials Express
- Volume:
- 11
- Issue:
- 6
- ISSN:
- 2159-3930
- Format(s):
- Medium: X Size: Article No. 1742
- Size(s):
- Article No. 1742
- Sponsoring Org:
- National Science Foundation
More Like this
-
in vivo . -
Dye-doped nanoparticles have been investigated as bright, luminescent labels for super-resolution microscopy via localization methods. One key factor in super-resolution is the size of the luminescent label, which in some cases results in a frame shift between the label target and the label itself. Ag@SiO 2 core–shell nanoparticles, doped with organic fluorophores, have shown promise as super-resolution labels. One key aspect of these nanoparticles is that they blink under certain conditions, allowing super-resolution localization with a single excitation source in aqueous solution. In this work, we investigated the effects of both the Ag core and the silica (SiO 2 ) shell on the self-blinking properties of these nanoparticles. Both core size and shell thickness were manipulated by altering the reaction time to determine core and shell effects on photoblinking. Size and shell thickness were investigated individually under both dry and hydrated conditions and were then doped with a 1 mM solution of Rhodamine 110 for analysis. We observed that the cores themselves are weakly luminescent and are responsible for the blinking observed in the fully-synthesized metal-enhanced fluorescence nanoparticles. There was no statistically significant difference in photoblinking behavior—both intensity and duty cycle—with decreasing core size. This observation was used to synthesize smaller nanoparticles ranging from approximately 93 nm to 110 nm as measured using dynamic light scattering. The blinking particles were localized via super-resolution microscopy and show single particle self-blinking behavior. As the core size did not impact blinking performance or intensity, the nanoparticles can instead be tuned for optimal size without sacrificing luminescence properties.more » « less
-
Abstract In the present study, a water‐soluble hyperbranched polymer platform that contained a Förster resonance energy transfer (FRET) array and exhibited varied fluorescence in response to solvent, light, and CN−anion stimuli was constructed. The use of chain‐growth copper‐catalyzed azide–alkyne cycloaddition polymerization (CuAACP) enabled accurate control of the ratio and distance of three incorporated fluorophores, coumarin (Cou), nitrobenzoxadiazole (NBD), and photoswitchable spiropyran (SP), that could be reversibly transformed into the red‐emitting merocyanine (MC) state. Within the FRET system, the energy flow from Cou to MC was significantly enhanced by the introduction of NBD as a central fluorophore relay. Moreover, the energy‐transfer efficiency was increased by changing the solvent from tetrahydrofuran to more polar water; this was accompanied by a clear color change and fluorescence behavior. These correlations of polymer composition and solvent polarity to the FRET efficiency were finally applied to the effective detection of CN−anion; thus demonstrating a function of this polymer as a CN−sensor.
-
Abstract Hairy nanoparticles (HNPs) constitute a class of hybrid nanocomposites that are resistant to aggregation and agglomeration, although the green, large‐scale synthesis of HNPs remains a challenge. In this work, 25 nm‐diameter silica‐core HNPs with a poly(methyl methacrylate) (PMMA) shell were synthesized using a graft‐from approach in aqueous miniemulsion, employing atom transfer radical polymerization with activators regenerated by electron transfer (ARGET‐ATRP). In particular, this work used tetrabutylammonium bromide (TBAB)‐assisted phase transfer of monomer, markedly improving upon earlier methods by showing that phase transfer could take place in the absence of organic solvents. Furthermore, syntheses with selected monomer addition rates produced HNP graft densities ranging from 0.011 to 0.017 chains/nm2and shell thicknesses ranging from 2.5 to 11 nm. Finally, analysis of reaction kinetics revealed that shell growth reached completion in as little as 2 hr, confirmed by the synthesis of >1 g of PMMA‐shell HNPs in a reduced timeframe.
-
null (Ed.)Fluorescent linear dendronized polyols (LDPs) were prepared in two steps involving a ring-opening metathesis polymerization (ROMP) followed by acid-catalyzed deprotection. The resulting water-soluble fluorophores are compact in size (<6 nm) and show similar photostability compared to previously reported crosslinked dendronized polyols (CDPs) and significantly improved photostability compared to the free fluorophores. In contrast to the synthesis of CDPs, the production of LDPs requires less preparation time, synthetic effort, and significantly less Grubbs catalyst. The photophysical properties, including the photostability and emission wavelength of LDPs, can be further fine-tuned by incorporating different combinations of dendronized monomers and fluorophores. Interestingly, fluorescence resonance energy transfer (FRET) was observed when two different kinds of fluorophores were incorporated into the LDPs. This provides a new type of fluorophore with a large Stokes shift allowing fluorescence detection with reduced background overlap. Cytotoxicity and fluorescence imaging studies confirmed the biocompatibility of these LDPs, which make them potential candidates for biological applications.more » « less