- Award ID(s):
- 1921495
- NSF-PAR ID:
- 10229115
- Date Published:
- Journal Name:
- 14th International Conference of the Learning Sciences (ICLS) 2020
- Volume:
- 3
- Page Range / eLocation ID:
- 1743-1744
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)In an effort to infuse computational thinking practices in upper elementary science, and to promote positive student dispositions toward STEM, this project investigates a new narrative-centered maker environment involving: 1) problem-based learning research and modeling of physical science concepts, 2) application of learned concepts to original digital stories created using block-based programming, and 3) further communication of science understanding through play with fabricated story sets and characters reflective of narratives.more » « less
-
Performance assessment (PA) has been increasingly advocated as a method for measuring students’ conceptual understanding of scientific phenomena. In this study, we describe preliminary findings of a simulation- based PA utilized to measure 8th grade students’ understanding of physical science concepts taught via an experimental problem-based curriculum, SLIDER (Science Learning Integrating Design Engineering and Robotics). In SLIDER, students use LEGO robotics to complete a series of investigations and engineering design challenges designed to deepen their understanding of key force and motion concepts (net force, acceleration, friction, balanced forces, and inertia). The simulation-based performance assessment consisted of 4 tasks in which students engaged with video simulations illustrating physical science concepts aligned to the SLIDER curriculum. The performance assessment was administered to a stratified sample of 8th grade students (N=24) in one school prior to and following implementation of the SLIDER curriculum. In addition to providing an illustration of the use of simulation- based performance assessment in the context of design-based implementation research (DBIR), the results of the study indicate preliminary evidence of student learning over the course of curriculum implementation.more » « less
-
Abstract Background Around the world, efforts are underway to include engineering design as part of elementary science instruction. A common rationale for those efforts is that Engineering Design-based Science Teaching (EDST) is a productive pedagogical approach for developing students’ understanding of core science concepts. Effectively utilizing EDST requires that teachers develop design activities that are highly connected to science content so that students can apply and expand their understanding of relevant concepts. In this study, we examine how a group of elementary (grades 3–5) pre-service and in-service teachers incorporated EDST into their planned science instruction. Those teachers were participants in a professional development project aimed at supporting EDST. We examine the ways that participants used EDST, the extent to which engineering design activities were connected to science concepts, and factors associated with those connections.
Results Most of the participants in the study developed science units in which an engineering design activity was placed at the end of the unit. Approximately half of those design activities lacked connections to the science concepts in the unit; they were typically related to the topic of the science unit, but did not require the use or development of key science ideas. Eleven percent of participants developed engineering activities with deep connections to science concepts, and 35% developed activities with shallow connections. No differences were found between life science, physical science, and earth/space science units in terms of the extent of conceptual connections. However, we did find that participants who utilized and adapted published engineering curriculum materials rather than make them from scratch were more likely to have unit plans with higher levels of conceptual connections.
Conclusions Our findings suggest that elementary teachers need additional support in order to effectively utilize EDST in their classrooms. Even within the context of a supportive professional development project, most of the engineering activities developed by our participants lacked substantial connections to the science concepts in their unit plans. Our findings highlight the value of high-quality curriculum materials to support EDST as well as the need to further expand the curriculum resources that are available to elementary teachers.
-
After the passage of the U.S. National Quantum Initiative Act in December 2018, the National Science Foundation (NSF) and the Office of Science and Technology Policy (OSTP) recently assembled an interagency working group and conducted a workshop titled “Key Concepts for Future Quantum Information Science Learners” that focused on identifying core concepts for future curricular and educator activities to help precollege students engage with quantum information science (QIS). Helping precollege students learn these key concepts in QIS is an effective approach to introducing them to the second quantum revolution and inspiring them to become future contributors in the growing field of quantum information science and technology as leaders in areas related to quantum computing, communication, and sensing. This paper is a call to precollege educators to contemplate including QIS concepts into their existing courses at appropriate levels and get involved in the development of curricular materials suitable for their students. Also, research shows that compare-and-contrast activities can provide an effective approach to helping students learn. Therefore, we illustrate a pedagogical approach that contrasts the classical and quantum concepts so that educators can adapt them for their students in their lesson plans to help them learn the differences between key concepts in quantum and classical contexts.more » « less
-
Science faculty are being asked to create active learning experiences that engage students in core concepts and science practices. This article describes an approach to developing active learning lessons from authentic science research projects using the 5E lesson format. Included is a description of the 5Es and a template for creating a 5E lesson. A description of the authors’ scientific research and the resulting 5E lesson for an introductory biology course are provided as an example of this approach. In the lesson described, students collected, analyzed, and interpreted data to construct explanations about the potential for evolution to occur in response to climate change. This approach supported students in learning core concepts and science practices and allowed the instructors to implement an active learning environment based on national science reforms. The results of this exploratory study and the rich descriptions of the lesson design should be used to raise awareness of one active-learning approach. Scientists can consider using this approach in their own teaching, and science education researchers can consider this approach in future comparative studies across various activelearning approaches.more » « less