skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using Knowledge Graphs and Reinforcement Learning for Malware Analysis
Machine learning algorithms used to detect attacks are limited by the fact that they cannot incorporate the back-ground knowledge that an analyst has. This limits their suitability in detecting new attacks. Reinforcement learning is different from traditional machine learning algorithms used in the cybersecurity domain. Compared to traditional ML algorithms, reinforcement learning does not need a mapping of the input-output space or a specific user-defined metric to compare data points. This is important for the cybersecurity domain, especially for malware detection and mitigation, as not all problems have a single, known, correct answer. Often, security researchers have to resort to guided trial and error to understand the presence of a malware and mitigate it.In this paper, we incorporate prior knowledge, represented as Cybersecurity Knowledge Graphs (CKGs), to guide the exploration of an RL algorithm to detect malware. CKGs capture semantic relationships between cyber-entities, including that mined from open source. Instead of trying out random guesses and observing the change in the environment, we aim to take the help of verified knowledge about cyber-attack to guide our reinforcement learning algorithm to effectively identify ways to detect the presence of malicious filenames so that they can be deleted to mitigate a cyber-attack. We show that such a guided system outperforms a base RL system in detecting malware.  more » « less
Award ID(s):
2025685 2133190
PAR ID:
10229649
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2020 IEEE International Conference on Big Data (Big Data)
Page Range / eLocation ID:
2626 to 2633
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The deployment of deep learning-based malware detection systems has transformed cybersecurity, offering sophisticated pattern recognition capabilities that surpass traditional signature-based approaches. However, these systems introduce new vulnerabilities requiring systematic investigation. This chapter examines adversarial attacks against graph neural network-based malware detection systems, focusing on semantics-preserving methodologies that evade detection while maintaining program functionality. We introduce a reinforcement learning (RL) framework that formulates the attack as a sequential decision making problem, optimizing the insertion of no-operation (NOP) instructions to manipulate graph structure without altering program behavior. Comparative analysis includes three baseline methods: random insertion, hill-climbing, and gradient-approximation attacks. Our experimental evaluation on real world malware datasets reveals significant differences in effectiveness, with the reinforcement learning approach achieving perfect evasion rates against both Graph Convolutional Network and Deep Graph Convolutional Neural Network architectures while requiring minimal program modifications. Our findings reveal three critical research gaps: transitioning from abstract Control Flow Graph representations to executable binary manipulation, developing universal vulnerability discovery across different architectures, and systematically translating adversarial insights into defensive enhancements. This work contributes to understanding adversarial vulnerabilities in graph-based security systems while establishing frameworks for evaluating machine learning-based malware detection robustness. 
    more » « less
  2. Martin, A; Hinkelmann, K; Fill, H.-G.; Gerber, A.; Lenat, D.; Stolle, R.; van Harmelen, F. (Ed.)
    AI models for cybersecurity have to detect and defend against constantly evolving cyber threats. Much effort is spent building defenses for zero days and unseen variants of known cyber-attacks. Current AI models for cybersecurity struggle with these yet unseen threats due to the constantly evolving nature of threat vectors, vulnerabilities, and exploits. This paper shows that cybersecurity AI models will be improved and more general if we include semi-structured representations of background knowledge. This could include information about the software and systems, as well as information obtained from observing the behavior of malware samples captured and detonated in honeypots. We describe how we can transfer this knowledge into forms that the RL models can directly use for decision-making purposes. 
    more » « less
  3. In this paper, we develop a learning-based secure control framework for cyber-physical systems in the presence of sensor attacks. Specifically, we use several observer-based estimators to detect the attacks while also introducing a threat detection level function. We then solve the underlying joint state estimation and attack mitigation problems by using a reinforcement learning algorithm. Finally, an illustrative numericalexampleisprovidedtoshowtheefficacyoftheproposed framework. 
    more » « less
  4. Cyber defense exercises are an important avenue to understand the technical capacity of organizations when faced with cyber-threats. Information derived from these exercises often leads to finding unseen methods to exploit vulnerabilities in an organization. These often lead to better defense mechanisms that can counter previously unknown exploits. With recent developments in cyber battle simulation platforms, we can generate a defense exercise environment and train reinforcement learning (RL) based autonomous agents to attack the system described by the simulated environment. In this paper, we describe a two-player game-based RL environment that simultaneously improves the performance of both the attacker and defender agents. We further accelerate the convergence of the RL agents by guiding them with expert knowledge from Cybersecurity Knowledge Graphs on attack and mitigation steps. We have implemented and integrated our proposed approaches into the CyberBattleSim system. 
    more » « less
  5. null (Ed.)
    Smart grids integrate advanced information and communication technologies (ICTs) into traditional power grids for more efficient and resilient power delivery and management, but also introduce new security vulnerabilities that can be exploited by adversaries to launch cyber attacks, causing severe consequences such as massive blackout and infrastructure damages. Existing machine learning-based methods for detecting cyber attacks in smart grids are mostly based on supervised learning, which need the instances of both normal and attack events for training. In addition, supervised learning requires that the training dataset includes representative instances of various types of attack events to train a good model, which is sometimes hard if not impossible. This paper presents a new method for detecting cyber attacks in smart grids using PMU data, which is based on semi-supervised anomaly detection and deep representation learning. Semi-supervised anomaly detection only employs the instances of normal events to train detection models, making it suitable for finding unknown attack events. A number of popular semi-supervised anomaly detection algorithms were investigated in our study using publicly available power system cyber attack datasets to identify the best-performing ones. The performance comparison with popular supervised algorithms demonstrates that semi-supervised algorithms are more capable of finding attack events than supervised algorithms. Our results also show that the performance of semi-supervised anomaly detection algorithms can be further improved by augmenting with deep representation learning. 
    more » « less