skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2133190

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Today there is a significant amount of fake cybersecurity related intelligence on the internet. To filter out such information, we build a system to capture the provenance information and represent it along with the captured Cyber Threat Intelligence (CTI). In the cybersecurity domain, such CTI is stored in Cybersecurity Knowledge Graphs (CKG). We enhance the exiting CKG model to incorporate intelligence provenance and fuse provenance graphs with CKG. This process includes modifying traditional approaches to entity and relation extraction. CTI data is considered vital in securing our cyberspace. Knowledge graphs containing CTI information along with its provenance can provide expertise to dependent Artificial Intelligence (AI) systems and human analysts. 
    more » « less
  2. With the rapid enhancements in technology and the adoption of web services, there has been a significant increase in cyber threats faced by organizations in cyberspace. Organizations want to purchase adequate cyber insurance to safeguard against the third-party services they use. However, cyber insurance policies describe their coverages and exclusions using legal jargon that can be difficult to comprehend. Parsing these policy documents and extracting the rules embedded in them is currently a very manual time-consuming process. We have developed a novel framework that automatically extracts the coverage and exclusion key terms and rules embedded in a cyber policy. We have built our framework using Information Retrieval and Artificial Intelligence techniques, specifically Semantic Web and Modal Logic. We have also developed a web interface where users can find the best matching cyber insurance policy based on particular coverage criteria. To validate our approach, we used industry standards proposed by the Federal Trade Commission document (FTC) and have applied it against publicly available policies of seven insurance providers. Our system will allow cyber insurance seekers to explore various policy documents and compare the paradigms mentioned in those documents while selecting the best relevant policy documents. 
    more » « less
  3. Cyber-defense systems are being developed to automatically ingest Cyber Threat Intelligence (CTI) that contains semi-structured data and/or text to populate knowledge graphs. A potential risk is that fake CTI can be generated and spread through Open-Source Intelligence (OSINT) communities or on the Web to effect a data poisoning attack on these systems. Adversaries can use fake CTI examples as training input to subvert cyber defense systems, forcing the model to learn incorrect inputs to serve their malicious needs. In this paper, we automatically generate fake CTI text descriptions using transformers. We show that given an initial prompt sentence, a public language model like GPT-2 with fine-tuning, can generate plausible CTI text with the ability of corrupting cyber-defense systems. We utilize the generated fake CTI text to perform a data poisoning attack on a Cybersecurity Knowledge Graph (CKG) and a cybersecurity corpus. The poisoning attack introduced adverse impacts such as returning incorrect reasoning outputs, representation poisoning, and corruption of other dependent AI-based cyber defense systems. We evaluate with traditional approaches and conduct a human evaluation study with cybersecurity professionals and threat hunters. Based on the study, professional threat hunters were equally likely to consider our fake generated CTI as true. 
    more » « less
  4. null (Ed.)
    Increasing number of internet connected devices has paved a path for smarter ecosystems in various sectors such as agriculture, aquaculture, manufacturing, healthcare, etc. Especially, integrating technologies like big data, artificial intelligence (AI), blockchain, etc. with internet connected devices has increased efficiency and productivity. Therefore, fishery farmers have started adopting smart fisheries technologies to better manage their fish farms. Despite their technological advancements smart fisheries are exposed and vulnerable to cyber-attacks that would cause a negative impact on the ecosystem both physically and economically. Therefore in this paper, we present a smart fisheries ecosystem where the architecture describes various interactions that happen between internet connected devices. We develop a smart fisheries ontology based on the architecture and implement Attribute Based Access Control System (ABAC) where access to resources of smart fisheries is granted by evaluating the requests. We also discuss how access control decisions are made in multiple use case scenarios of a smart fisheries ecosystem. Furthermore, we elaborate on some AI applications that would enhance the smart fisheries ecosystem. 
    more » « less
  5. null (Ed.)
    This tutorial provides a review of the state-of-the-art research and the applications of Artificial Intelligence and Machine Learning for malware analysis. We will provide an overview, background and results with respect to the three main malware analysis approaches: static malware analysis, dynamic malware analysis and online malware analysis. Further, we will provide a simplified hands-on tutorial of applying ML algorithm for dynamic malware analysis in cloud IaaS. 
    more » « less
  6. null (Ed.)
    Machine learning algorithms used to detect attacks are limited by the fact that they cannot incorporate the back-ground knowledge that an analyst has. This limits their suitability in detecting new attacks. Reinforcement learning is different from traditional machine learning algorithms used in the cybersecurity domain. Compared to traditional ML algorithms, reinforcement learning does not need a mapping of the input-output space or a specific user-defined metric to compare data points. This is important for the cybersecurity domain, especially for malware detection and mitigation, as not all problems have a single, known, correct answer. Often, security researchers have to resort to guided trial and error to understand the presence of a malware and mitigate it.In this paper, we incorporate prior knowledge, represented as Cybersecurity Knowledge Graphs (CKGs), to guide the exploration of an RL algorithm to detect malware. CKGs capture semantic relationships between cyber-entities, including that mined from open source. Instead of trying out random guesses and observing the change in the environment, we aim to take the help of verified knowledge about cyber-attack to guide our reinforcement learning algorithm to effectively identify ways to detect the presence of malicious filenames so that they can be deleted to mitigate a cyber-attack. We show that such a guided system outperforms a base RL system in detecting malware. 
    more » « less
  7. null (Ed.)
    The implementation of Internet of Things (IoT) devices in medical environments, has introduced a growing list of security vulnerabilities and threats. The lack of an extensible big data resource that captures medical device vulnerabilities limits the use of Artificial Intelligence (AI) based cyber defense systems in capturing, detecting, and preventing known and future attacks. We describe a system that generates a repository of Cyber Threat Intelligence (CTI) about various medical devices and their known vulnerabilities from sources such as manufacturer and ICS-CERT vulnerability alerts. We augment the intelligence repository with data sources such as Wikidata and public medical databases. The combined resources are integrated with threat intelligence in our Cybersecurity Knowledge Graph (CKG) from previous research. The augmented graph embeddings are useful in querying relevant information and can help in various AI assisted cybersecurity tasks. Given the integration of multiple resources, we found the augmented CKG produced higher quality graph representations. The augmented CKG produced a 31% increase in the Mean Average Precision (MAP) value, computed over an information retrieval task. 
    more » « less
  8. null (Ed.)
    Security engineers and researchers use their disparate knowledge and discretion to identify malware present in a system. Sometimes, they may also use previously extracted knowledge and available Cyber Threat Intelligence (CTI) about known attacks to establish a pattern. To aid in this process, they need knowledge about malware behavior mapped to the available CTI. Such mappings enrich our representations and also helps verify the information. In this paper, we describe how we retrieve malware samples and execute them in a local system. The tracked malware behavior is represented in our Cybersecurity Knowledge Graph (CKG), so that a security professional can reason with behavioral information present in the graph and draw parallels with that information. We also merge the behavioral information with knowledge extracted from the text in CTI sources like technical reports and blogs about the same malware to improve the reasoning capabilities of our CKG significantly. 
    more » « less