skip to main content


Title: Continuous N\'{e}el-VBS quantum phase transition in non-local one-dimensional systems with SO(3) symmetry
One dimensional (1d) interacting systems with local Hamiltonianscan be studied with various well-developed analytical methods.Recently novel 1d physics was found numerically in systems witheither spatially nonlocal interactions, or at the 1d boundary of2d quantum critical points, and the critical fluctuation in thebulk also yields effective nonlocal interactions at the boundary.This work studies the edge states at the 1d boundary of 2dstrongly interacting symmetry protected topological (SPT) states,when the bulk is driven to a disorder-order phase transition. Wewill take the 2d Affleck-Kennedy-Lieb-Tasaki (AKLT) state as anexample, which is a SPT state protected by the SO(3) spinsymmetry and spatial translation. We found that the original(1+1)d boundary conformal field theory of the AKLT state isunstable due to coupling to the boundary avatar of the bulkquantum critical fluctuations. When the bulk is fixed at thequantum critical point, within the accuracy of our expansionmethod, we find that by tuning one parameter at the boundary,there is a generic direct transition between the long rangeantiferromagnetic Néel order and the valence bond solid (VBS)order. This transition is very similar to the Néel-VBStransition recently found in numerical simulation of a spin-1/2chain with nonlocal spatial interactions. Connections between ouranalytical studies and recent numerical results concerning theedge states of the 2d AKLT-like state at a bulk quantum phasetransition will also be discussed.  more » « less
Award ID(s):
1920434
NSF-PAR ID:
10229671
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
SciPost Physics
Volume:
10
Issue:
2
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In the presence of strong spin-independent interactions and spin-orbit coupling, we show that the spinor Bose liquid confined to one spatial dimension undergoes an interaction- or density-tuned quantum phase transition similar to one theoretically proposed for itinerant magnetic solid-state systems. The order parameter describes broken Z2inversion symmetry, with the ordered phase accompanied by non-vanishing momentum which is generated by fluctuations of an emergent dynamical gauge field at the phase transition. This quantum phase transition has dynamical critical exponentz ≃ 2, typical of a Lifshitz transition, but is described by a nontrivial interacting fixed point. From direct numerical simulation of the microscopic model, we extract previously unknown critical exponents for this fixed point. Our model describes a realistic situation of 1D ultracold atoms with Raman-induced spin-orbit coupling, establishing this system as a platform for studying exotic critical behavior of the Hertz-Millis type.

     
    more » « less
  2. A bstract We develop a mathematical theory of symmetry protected trivial (SPT) orders and anomaly-free symmetry enriched topological (SET) orders in all dimensions via two different approaches with an emphasis on the second approach. The first approach is to gauge the symmetry in the same dimension by adding topological excitations as it was done in the 2d case, in which the gauging process is mathematically described by the minimal modular extensions of unitary braided fusion 1-categories. This 2d result immediately generalizes to all dimensions except in 1d, which is treated with special care. The second approach is to use the 1-dimensional higher bulk of the SPT/SET order and the boundary-bulk relation. This approach also leads us to a precise mathematical description and a classification of SPT/SET orders in all dimensions. The equivalence of these two approaches, together with known physical results, provides us with many precise mathematical predictions. 
    more » « less
  3. It is known that the classical O(N) O ( N ) model in dimension d > 3 d gt; 3 at its bulk critical point admits three boundary universality classes:the ordinary, the extra-ordinary and the special. For the ordinarytransition the bulk and the boundary order simultaneously; theextra-ordinary fixed point corresponds to the bulk transition occurringin the presence of an ordered boundary, while the special fixed pointcorresponds to a boundary phase transition between the ordinary and theextra-ordinary classes. While the ordinary fixed point survives in d = 3 d = 3 ,it is less clear what happens to the extra-ordinary and special fixedpoints when d = 3 d = 3 and N \ge 2 N ≥ 2 .Here we show that formally treating N N as a continuous parameter, there exists a critical value N_c > 2 N c gt; 2 separating two distinct regimes. For 2 \leq N < N_c 2 ≤ N < N c the extra-ordinary fixed point survives in d = 3 d = 3 ,albeit in a modified form: the long-range boundary order is lost,instead, the order parameter correlation function decays as a power of \log r log r .For N > N_c N gt; N c there is no fixed point with order parameter correlations decayingslower than power law. We discuss several scenarios for the evolution ofthe phase diagram past N = N_c N = N c .Our findings appear to be consistent with recent Monte Carlo studies ofclassical models with N = 2 N = 2 and N = 3 N = 3 .We also compare our results to numerical studies of boundary criticalityin 2+1D quantum spin models. 
    more » « less
  4. Abstract

    Symmetry-protected topological crystalline insulators (TCIs) have primarily been characterized by their gapless boundary states. However, in time-reversal- ($${{{{{{{\mathcal{T}}}}}}}}$$T-) invariant (helical) 3D TCIs—termed higher-order TCIs (HOTIs)—the boundary signatures can manifest as a sample-dependent network of 1D hinge states. We here introduce nested spin-resolved Wilson loops and layer constructions as tools to characterize the intrinsic bulk topological properties of spinful 3D insulators. We discover that helical HOTIs realize one of three spin-resolved phases with distinct responses that are quantitatively robust to large deformations of the bulk spin-orbital texture: 3D quantum spin Hall insulators (QSHIs), “spin-Weyl” semimetals, and$${{{{{{{\mathcal{T}}}}}}}}$$T-doubled axion insulator (T-DAXI) states with nontrivial partial axion angles indicative of a 3D spin-magnetoelectric bulk response and half-quantized 2D TI surface states originating from a partial parity anomaly. Using ab-initio calculations, we demonstrate thatβ-MoTe2realizes a spin-Weyl state and thatα-BiBr hosts both 3D QSHI and T-DAXI regimes.

     
    more » « less
  5. A<sc>bstract</sc>

    We analyze a Higgs transition from a U(1) Dirac spin liquid to a gapless ℤ2spin liquid. This ℤ2spin liquid is of relevance to the spinS= 1/2 square lattice antiferromagnet, where recent numerical studies have given evidence for such a phase existing in the regime of high frustration between nearest neighbor and next-nearest neighbor antiferromagnetic interactions (theJ1-J2model), appearing in a parameter regime between the vanishing of Néel order and the onset of valence bond solid ordering. The proximate Dirac spin liquid is unstable to monopole proliferation on the square lattice, ultimately leading to Néel or valence bond solid ordering. As such, we conjecture that this Higgs transition describes the critical theory separating the gapless ℤ2spin liquid of theJ1-J2model from one of the two proximate ordered phases. The transition into the other ordered phase can be described in a unified manner via a transition into an unstable SU(2) spin liquid, which we have analyzed in prior work. By studying the deconfined critical theory separating the U(1) Dirac spin liquid from the gapless ℤ2spin liquid in a 1/Nfexpansion, withNfproportional to the number of fermions, we find a stable fixed point with an anisotropic spinon dispersion and a dynamical critical exponentz≠ 1. We analyze the consequences of this anisotropic dispersion by calculating the angular profiles of the equal-time Néel and valence bond solid correlation functions, and we find them to be distinct. We also note the influence of the anisotropy on the scaling dimension of monopoles.

     
    more » « less