skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Boundary criticality of the O(N) model in d = 3 critically revisited
It is known that the classical O(N) O ( N ) model in dimension d > 3 d gt; 3 at its bulk critical point admits three boundary universality classes:the ordinary, the extra-ordinary and the special. For the ordinarytransition the bulk and the boundary order simultaneously; theextra-ordinary fixed point corresponds to the bulk transition occurringin the presence of an ordered boundary, while the special fixed pointcorresponds to a boundary phase transition between the ordinary and theextra-ordinary classes. While the ordinary fixed point survives in d = 3 d = 3 ,it is less clear what happens to the extra-ordinary and special fixedpoints when d = 3 d = 3 and N \ge 2 N ≥ 2 .Here we show that formally treating N N as a continuous parameter, there exists a critical value N_c > 2 N c gt; 2 separating two distinct regimes. For 2 \leq N < N_c 2 ≤ N < N c the extra-ordinary fixed point survives in d = 3 d = 3 ,albeit in a modified form: the long-range boundary order is lost,instead, the order parameter correlation function decays as a power of \log r log r .For N > N_c N gt; N c there is no fixed point with order parameter correlations decayingslower than power law. We discuss several scenarios for the evolution ofthe phase diagram past N = N_c N = N c .Our findings appear to be consistent with recent Monte Carlo studies ofclassical models with N = 2 N = 2 and N = 3 N = 3 .We also compare our results to numerical studies of boundary criticalityin 2+1D quantum spin models.  more » « less
Award ID(s):
1847861
PAR ID:
10394238
Author(s) / Creator(s):
Date Published:
Journal Name:
SciPost Physics
Volume:
12
Issue:
4
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper studies the critical behavior of the 3d classicalO (N) ( N ) model with a boundary. Recently, one of us established that upontreating N N as a continuous variable, there exists a critical value N_c > 2 N c > 2 such that for 2 \leq N < N_c 2 ≤ N < N c the model exhibits a new extraordinary-log boundary universality class,if the symmetry preserving interactions on the boundary are enhanced. N_c N c is determined by a ratio of universal amplitudes in the normaluniversality class, where instead a symmetry breaking field is appliedon the boundary. We study the normal universality class using thenumerical conformal bootstrap. We find truncated solutions to thecrossing equation that indicate N_c \approx 5 N c ≈ 5 .Additionally, we use semi-definite programming to place rigorous boundson the boundary CFT data of interest to conclude that N_c > 3 N c > 3 ,under a certain positivity assumption which we check in variousperturbative limits. 
    more » « less
  2. It was recently found that the classical 3d O(N) model in the semi-infinite geometry can exhibit an “extraordinary-log” boundary universality class, where the spin-spin correlation function on the boundary falls off as < S(x) S(0)> ~ 1/ (log x)^q. This universality class exists for a range 2 ≤ N < Nc and Monte-Carlo simulations and conformal bootstrap indicate Nc > 3. In this work, we extend this result to the 3d O(N) model in an infinite geometry with a plane defect. We use renormalization group (RG) to show that in this case the extraordinary-log universality class is present for any finite N ≥ 2. We additionally show, in agreement with our RG analysis, that the line of defect fixed points which is present at infinite N is lifted to the ordinary, special (no defect) and extraordinary-log universality classes by 1/N corrections. We study the “central charge” a for the O(N) model in the boundary and interface geometries and provide a non-trivial detailed check of an a-theorem by Jensen and O’Bannon. Finally, we revisit the problem of the O(N) model in the semi-infinite geometry. We find evidence that at N = Nc the extraordinary and special fixed points annihilate and only the ordinary fixed point is left for N > Nc . 
    more » « less
  3. We generalize the area-law violating models of Fredkin and Motzkin spin chains into two dimensions by building quantum six- and nineteen-vertex models with correlated interactions. The Hamiltonian is frustration free, and its projectors generate ergodic dynamics within the subspace of height configuration that are non negative. The ground state is a volume- and color-weighted superposition of classical bi-color vertex configurations with non-negative heights in the bulk and zero height on the boundary. The entanglement entropy between subsystems has a phase transition as the q q -deformation parameter is tuned, which is shown to be robust in the presence of an external field acting on the color degree of freedom. The ground state undergoes a quantum phase transition between area- and volume-law entanglement phases with a critical point where entanglement entropy scales as a function L\log L L log L of the linear system size L L . Intermediate power law scalings between L\log L L log L and L^2 L 2 can be achieved with an inhomogeneous deformation parameter that approaches 1 at different rates in the thermodynamic limit. For the q>1 q > 1 phase, we construct a variational wave function that establishes an upper bound on the spectral gap that scales as q^{-L^3/8} q − L 3 / 8 . 
    more » « less
  4. null (Ed.)
    One dimensional (1d) interacting systems with local Hamiltonianscan be studied with various well-developed analytical methods.Recently novel 1d physics was found numerically in systems witheither spatially nonlocal interactions, or at the 1d boundary of2d quantum critical points, and the critical fluctuation in thebulk also yields effective nonlocal interactions at the boundary.This work studies the edge states at the 1d boundary of 2dstrongly interacting symmetry protected topological (SPT) states,when the bulk is driven to a disorder-order phase transition. Wewill take the 2d Affleck-Kennedy-Lieb-Tasaki (AKLT) state as anexample, which is a SPT state protected by the SO(3) spinsymmetry and spatial translation. We found that the original(1+1)d boundary conformal field theory of the AKLT state isunstable due to coupling to the boundary avatar of the bulkquantum critical fluctuations. When the bulk is fixed at thequantum critical point, within the accuracy of our expansionmethod, we find that by tuning one parameter at the boundary,there is a generic direct transition between the long rangeantiferromagnetic Néel order and the valence bond solid (VBS)order. This transition is very similar to the Néel-VBStransition recently found in numerical simulation of a spin-1/2chain with nonlocal spatial interactions. Connections between ouranalytical studies and recent numerical results concerning theedge states of the 2d AKLT-like state at a bulk quantum phasetransition will also be discussed. 
    more » « less
  5. An \ell _p oblivious subspace embedding is a distribution over r \times n matrices \Pi such that for any fixed n \times d matrix A , \[ \Pr _{\Pi }[\textrm {for all }x, \ \Vert Ax\Vert _p \le \Vert \Pi Ax\Vert _p \le \kappa \Vert Ax\Vert _p] \ge 9/10,\] where r is the dimension of the embedding, \kappa is the distortion of the embedding, and for an n -dimensional vector y , \Vert y\Vert _p = (\sum _{i=1}^n |y_i|^p)^{1/p} is the \ell _p -norm. Another important property is the sparsity of \Pi , that is, the maximum number of non-zero entries per column, as this determines the running time of computing \Pi A . While for p = 2 there are nearly optimal tradeoffs in terms of the dimension, distortion, and sparsity, for the important case of 1 \le p \lt 2 , much less was known. In this article, we obtain nearly optimal tradeoffs for \ell _1 oblivious subspace embeddings, as well as new tradeoffs for 1 \lt p \lt 2 . Our main results are as follows: (1) We show for every 1 \le p \lt 2 , any oblivious subspace embedding with dimension r has distortion \[ \kappa = \Omega \left(\frac{1}{\left(\frac{1}{d}\right)^{1 / p} \log ^{2 / p}r + \left(\frac{r}{n}\right)^{1 / p - 1 / 2}}\right).\] When r = {\operatorname{poly}}(d) \ll n in applications, this gives a \kappa = \Omega (d^{1/p}\log ^{-2/p} d) lower bound, and shows the oblivious subspace embedding of Sohler and Woodruff (STOC, 2011) for p = 1 is optimal up to {\operatorname{poly}}(\log (d)) factors. (2) We give sparse oblivious subspace embeddings for every 1 \le p \lt 2 . Importantly, for p = 1 , we achieve r = O(d \log d) , \kappa = O(d \log d) and s = O(\log d) non-zero entries per column. The best previous construction with s \le {\operatorname{poly}}(\log d) is due to Woodruff and Zhang (COLT, 2013), giving \kappa = \Omega (d^2 {\operatorname{poly}}(\log d)) or \kappa = \Omega (d^{3/2} \sqrt {\log n} \cdot {\operatorname{poly}}(\log d)) and r \ge d \cdot {\operatorname{poly}}(\log d) ; in contrast our r = O(d \log d) and \kappa = O(d \log d) are optimal up to {\operatorname{poly}}(\log (d)) factors even for dense matrices. We also give (1) \ell _p oblivious subspace embeddings with an expected 1+\varepsilon number of non-zero entries per column for arbitrarily small \varepsilon \gt 0 , and (2) the first oblivious subspace embeddings for 1 \le p \lt 2 with O(1) -distortion and dimension independent of n . Oblivious subspace embeddings are crucial for distributed and streaming environments, as well as entrywise \ell _p low-rank approximation. Our results give improved algorithms for these applications. 
    more » « less