An effective real-time estimation of the travel time for vehicles, using AVL (Automatic Vehicle Locators) has added a new dimension to the smart city planning. In this paper, the authors used data collected over several months from a transit agency and show how this data can be potentially used to learn patterns of travel time during specially planned events like NFL (National Football League) games and music award ceremonies. The impact of NFL games along with consideration of other factors like weather, traffic condition, distance is discussed with their relative importance to the prediction of travel time. Statistical learning modelsmore »
Data-driven Bus Crowding Prediction Models Using Context-specific Features
Public transit is one of the first things that come to mind when someone talks about “smart cities.” As a result, many technologies, applications, and infrastructure have already been deployed to bring the promise of the smart city to public transportation. Most of these have focused on answering the question, “When will my bus arrive?”; little has been done to answer the question, “How full will my next bus be?” which also dramatically affects commuters’ quality of life. In this article, we consider the bus fullness problem. In particular, we propose two different formulations of the problem, develop multiple predictive models, and evaluate their accuracy using data from the Pittsburgh region. Our predictive models consistently outperform the baselines (by up to 8 times).
- Award ID(s):
- 1739413
- Publication Date:
- NSF-PAR ID:
- 10229761
- Journal Name:
- ACM/IMS Transactions on Data Science
- Volume:
- 1
- Issue:
- 3
- Page Range or eLocation-ID:
- 1 to 33
- ISSN:
- 2691-1922
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Effective public transit operations are one of the fundamental requirements for a modern community. Recently, a number of transit agencies have started integrating automated vehicle locators in their fleet, which provides a real-time estimate of the time of arrival. In this paper, we use the data collected over several months from one such transit system and show how this data can be potentially used to learn long term patterns of travel time. More specifically, we study the effect of weather and other factors such as traffic on the transit system delay. These models can later be used to understand themore »
-
Smart city projects aim to enhance the management of city infrastructure by enabling government entities to monitor, control and maintain infrastructure efficiently through the deployment of Internet-of-things (IoT) devices. However, the financial burden associated with smart city projects is a detriment to prospective smart cities. A noteworthy factor that impacts the cost and sustainability of smart city projects is providing cellular Internet connectivity to IoT devices. In response to this problem, this paper explores the use of public transportation network nodes and mules, such as bus-stops as buses, to facilitate connectivity via device-to-device communication in order to reduce cellular connectivitymore »
-
Systems exhibiting nonlinear dynamics, including but not limited to chaos, are ubiquitous across Earth Sciences such as Meteorology, Hydrology, Climate and Ecology, as well as Biology such as neural and cardiac processes. However, System Identification remains a challenge. In climate and earth systems models, while governing equations follow from first principles and understanding of key processes has steadily improved, the largest uncertainties are often caused by parameterizations such as cloud physics, which in turn have witnessed limited improvements over the last several decades. Climate scientists have pointed to Machine Learning enhanced parameter estimation as a possible solution, with proof-of-concept methodologicalmore »
-
Public transit agencies are focused on making their fixed-line bus systems more energy efficient by introducing electric (EV) and hybrid (HV) vehicles to their eets. However, because of the high upfront cost of these vehicles, most agencies are tasked with managing a mixed-fleet of internal combustion vehicles (ICEVs), EVs, and HVs. In managing mixed-fleets, agencies require accurate predictions of energy use for optimizing the assignment of vehicles to transit routes, scheduling charging, and ensuring that emission standards are met. The current state-of-the-art is to develop separate neural network models to predict energy consumption for each vehicle class. Although different vehiclemore »