skip to main content


Title: Error analysis of higher order trace finite element methods for the surface Stokes equation
Abstract The paper studies a higher order unfitted finite element method for the Stokes system posed on a surface in ℝ 3 . The method employs parametric P k - P k −1 finite element pairs on tetrahedral bulk mesh to discretize the Stokes system on embedded surface. Stability and optimal order convergence results are proved. The proofs include a complete quantification of geometric errors stemming from approximate parametric representation of the surface. Numerical experiments include formal convergence studies and an example of the Kelvin--Helmholtz instability problem on the unit sphere.  more » « less
Award ID(s):
2011444
NSF-PAR ID:
10229788
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Numerical Mathematics
Volume:
0
Issue:
0
ISSN:
1570-2820
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Two‐phase flow, a system where Stokes flow and Darcy flow are coupled, is of great importance in the Earth's interior, such as in subduction zones, mid‐ocean ridges, and hotspots. However, it remains challenging to solve the two‐phase equations accurately in the zero‐porosity limit, for example, when melt is fully frozen below solidus temperature. Here we propose a new three‐field formulation of the two‐phase system, with solid velocity (vs), total pressure (Pt), and fluid pressure (Pf) as unknowns, and present a robust finite‐element implementation, which can be used to solve problems in which domains of both zero porosity and non‐zero porosity are present. The reformulated equations include regularization to avoid singularities and exactly recover to the standard single‐phase incompressible Stokes problem at zero porosity. We verify the correctness of our implementation using the method of manufactured solutions and analytic solutions and demonstrate that we can obtain the expected convergence rates in both space and time. Example experiments, such as self‐compaction, falling block, and mid‐ocean ridge spreading show that this formulation can robustly resolve zero‐ and non‐zero‐porosity domains simultaneously, and can be used for a large range of applications in various geodynamic settings.

     
    more » « less
  2. Abstract

    A new discontinuous Galerkin finite element method for the Stokes equations is developed in the primary velocity‐pressure formulation. This method employs discontinuous polynomials for both velocity and pressure on general polygonal/polyhedral meshes. Most finite element methods with discontinuous approximation have one or more stabilizing terms for velocity and for pressure to guarantee stability and convergence. This new finite element method has the standard conforming finite element formulation, without any velocity or pressure stabilizers. Optimal‐order error estimates are established for the corresponding numerical approximation in various norms. The numerical examples are tested for low and high order elements up to the degree four in 2D and 3D spaces.

     
    more » « less
  3. The paper considers a system of equations that models a lateral flow of a Boussinesq–Scriven fluid on a passively evolving surface embedded in [Formula: see text]. For the resulting Navier–Stokes type system, posed on a smooth closed time-dependent surface, we introduce a weak formulation in terms of functional spaces on a space-time manifold defined by the surface evolution. The weak formulation is shown to be well-posed for any finite final time and without smallness conditions on data. We further extend an unfitted finite element method, known as TraceFEM, to compute solutions to the fluid system. Convergence of the method is demonstrated numerically. In another series of experiments we visualize lateral flows induced by smooth deformations of a material surface. 
    more » « less
  4. Abstract We present a mixed finite element method for approximating a fourth-order elliptic partial differential equation (PDE), the Kirchhoff plate equation, on a surface embedded in ${\mathbb {R}}^{3}$, with or without boundary. Error estimates are given in mesh-dependent norms that account for the surface approximation and the approximation of the surface PDE. The method is built on the classic Hellan–Herrmann–Johnson method (for flat domains), and convergence is established for $C^{k+1}$ surfaces, with degree $k$ (Lagrangian, parametrically curved) approximation of the surface, for any $k \geqslant 1$. Mixed boundary conditions are allowed, including clamped, simply-supported and free conditions; if free conditions are present then the surface must be at least $C^{2,1}$. The framework uses tools from differential geometry and is directly related to the seminal work of Dziuk, G. (1988) Finite elements for the Beltrami operator on arbitrary surfaces. Partial Differential Equations and Calculus of Variations, vol. 1357 (S. Hildebrandt & R. Leis eds). Berlin, Heidelberg: Springer, pp. 142–155. for approximating the Laplace–Beltrami equation. The analysis here is the first to handle the full surface Hessian operator directly. Numerical examples are given on nontrivial surfaces that demonstrate our convergence estimates. In addition, we show how the surface biharmonic equation can be solved with this method. 
    more » « less
  5. Summary

    This article presents a nonlinear closed‐loop active flow control (AFC) method, which achieves asymptotic regulation of a fluid flow velocity field in the presence of actuator uncertainty and sensor measurement limitations. To achieve the result, a reduced‐order model of the flow dynamics is derived, which utilizes proper orthogonal decomposition (POD) to express the Navier‐Stokes equations as a set of nonlinear ordinary differential equations. The reduced‐order model formally incorporates the actuation effects of synthetic jet actuators (SJA). Challenges inherent in the resulting POD‐based reduced‐order model include (1) the states are not directly measurable, (2) the measurement equation is in a nonstandard mathematical form, and (3) the SJA model contains parametric uncertainty. To address these challenges, a sliding mode observer (SMO) is designed to estimate the unmeasurable states in the reduced‐order model of the actuated flow field dynamics. A salient feature of the proposed SMO is that it formally compensates for the parametric uncertainty inherent in the SJA model. The SMO is rigorously proven to achieve local finite‐time estimation of the unmeasurable state in the presence of the parametric uncertainty in the SJA. The state estimates are then utilized in a nonlinear control law, which regulates the flow field velocity to a desired state. A Lyapunov‐based stability analysis is provided to prove local asymptotic regulation of the flow field velocity. To illustrate the performance of the proposed estimation and AFC method, comparative numerical simulation results are provided, which demonstrate the improved performance that is achieved by incorporating the uncertainty compensator.

     
    more » « less