skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Error analysis of higher order trace finite element methods for the surface Stokes equation
Abstract The paper studies a higher order unfitted finite element method for the Stokes system posed on a surface in ℝ 3 . The method employs parametric P k - P k −1 finite element pairs on tetrahedral bulk mesh to discretize the Stokes system on embedded surface. Stability and optimal order convergence results are proved. The proofs include a complete quantification of geometric errors stemming from approximate parametric representation of the surface. Numerical experiments include formal convergence studies and an example of the Kelvin--Helmholtz instability problem on the unit sphere.  more » « less
Award ID(s):
2011444
PAR ID:
10229788
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Numerical Mathematics
Volume:
0
Issue:
0
ISSN:
1570-2820
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The paper considers a system of equations that models a lateral flow of a Boussinesq–Scriven fluid on a passively evolving surface embedded in [Formula: see text]. For the resulting Navier–Stokes type system, posed on a smooth closed time-dependent surface, we introduce a weak formulation in terms of functional spaces on a space-time manifold defined by the surface evolution. The weak formulation is shown to be well-posed for any finite final time and without smallness conditions on data. We further extend an unfitted finite element method, known as TraceFEM, to compute solutions to the fluid system. Convergence of the method is demonstrated numerically. In another series of experiments we visualize lateral flows induced by smooth deformations of a material surface. 
    more » « less
  2. Surface Stokes and Navier–Stokes equations are used to model fluid flow on surfaces. They have attracted significant recent attention in the numerical analysis literature because approximation of their solutions poses significant challenges not encountered in the Euclidean context. One challenge comes from the need to simultaneously enforce tangentiality and $H^1$ conformity (continuity) of discrete vector fields used to approximate solutions in the velocity-pressure formulation. Existing methods in the literature all enforce one of these two constraints weakly either by penalization or by use of Lagrange multipliers. Missing so far is a robust and systematic construction of surface Stokes finite element spaces which employ nodal degrees of freedom, including MINI, Taylor–Hood, Scott–Vogelius, and other composite elements which can lead to divergence-conforming or pressure-robust discretizations. In this paper we construct surface MINI spaces whose velocity fields are tangential. They are not $H^1$-conforming, but do lie in $H(div)$ and do not require penalization to achieve optimal convergence rates. We prove stability and optimal-order energy-norm convergence of the method and demonstrate optimal-order convergence of the velocity field in $$L_2$$ via numerical experiments. The core advance in the paper is the construction of nodal degrees of freedom for the velocity field. This technique also may be used to construct surface counterparts to many other standard Euclidean Stokes spaces, and we accordingly present numerical experiments indicating optimal-order convergence of nonconforming tangential surface Taylor–Hood elements. 
    more » « less
  3. Abstract The paper addresses an error analysis of an Eulerian finite element method used for solving a linearized Navier–Stokes problem in a time-dependent domain. In this study, the domain’s evolution is assumed to be known and independent of the solution to the problem at hand. The numerical method employed in the study combines a standard backward differentiation formula-type time-stepping procedure with a geometrically unfitted finite element discretization technique. Additionally, Nitsche’s method is utilized to enforce the boundary conditions. The paper presents a convergence estimate for several velocity–pressure elements that are inf-sup stable. The estimate demonstrates optimal order convergence in the energy norm for the velocity component and a scaled $$L^{2}(H^{1})$$-type norm for the pressure component. 
    more » « less
  4. Abstract We present a mixed finite element method for approximating a fourth-order elliptic partial differential equation (PDE), the Kirchhoff plate equation, on a surface embedded in $${\mathbb {R}}^{3}$$, with or without boundary. Error estimates are given in mesh-dependent norms that account for the surface approximation and the approximation of the surface PDE. The method is built on the classic Hellan–Herrmann–Johnson method (for flat domains), and convergence is established for $$C^{k+1}$$ surfaces, with degree $$k$$ (Lagrangian, parametrically curved) approximation of the surface, for any $$k \geqslant 1$$. Mixed boundary conditions are allowed, including clamped, simply-supported and free conditions; if free conditions are present then the surface must be at least $$C^{2,1}$$. The framework uses tools from differential geometry and is directly related to the seminal work of Dziuk, G. (1988) Finite elements for the Beltrami operator on arbitrary surfaces. Partial Differential Equations and Calculus of Variations, vol. 1357 (S. Hildebrandt & R. Leis eds). Berlin, Heidelberg: Springer, pp. 142–155. for approximating the Laplace–Beltrami equation. The analysis here is the first to handle the full surface Hessian operator directly. Numerical examples are given on nontrivial surfaces that demonstrate our convergence estimates. In addition, we show how the surface biharmonic equation can be solved with this method. 
    more » « less
  5. Summary In this paper, we propose and analyze two stabilized mixed finite element methods for the dual‐porosity‐Stokes model, which couples the free flow region and microfracture‐matrix system through four interface conditions on an interface. The first stabilized mixed finite element method is a coupled method in the traditional format. Based on the idea of partitioned time stepping, the four interface conditions, and the mass exchange terms in the dual‐porosity model, the second stabilized mixed finite element method is decoupled in two levels and allows a noniterative splitting of the coupled problem into three subproblems. Due to their superior conservation properties and convenience of the computation of flux, mixed finite element methods have been widely developed for different types of subsurface flow problems in porous media. For the mixed finite element methods developed in this article, no Lagrange multiplier is used, but an interface stabilization term with a penalty parameter is added in the temporal discretization. This stabilization term ensures the numerical stability of both the coupled and decoupled schemes. The stability and the convergence analysis are carried out for both the coupled and decoupled schemes. Three numerical experiments are provided to demonstrate the accuracy, efficiency, and applicability of the proposed methods. 
    more » « less