skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Key Role of Coupled Chemistry–Climate Interactions in Tropical Stratospheric Temperature Variability
Abstract The purpose of this study is to quantify the effects of coupled chemistry–climate interactions on the amplitude and structure of stratospheric temperature variability. To do so, the authors examine two simulations run on version 4 of the Whole Atmosphere Coupled Climate Model (WACCM): a “free-running” simulation that includes fully coupled chemistry–climate interactions and a “specified chemistry” version of the model forced with prescribed climatological-mean chemical composition. The results indicate that the inclusion of coupled chemistry–climate interactions increases the internal variability of temperature by a factor of ~2 in the lower tropical stratosphere and—to a lesser extent—in the Southern Hemisphere polar stratosphere. The increased temperature variability in the lower tropical stratosphere is associated with dynamically driven ozone–temperature feedbacks that are only included in the coupled chemistry simulation. The results highlight the fundamental role of two-way feedbacks between the atmospheric circulation and chemistry in driving climate variability in the lower stratosphere.  more » « less
Award ID(s):
1848785 1848863
PAR ID:
10230158
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
33
Issue:
17
ISSN:
0894-8755
Page Range / eLocation ID:
7619 to 7629
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Hunga Tonga‐Hunga Ha'apai (Hunga) volcanic eruption in January 2022 injected a substantial amount of water vapor and a moderate amount of SO2into the stratosphere. Both satellite observations in 2022 and subsequent chemistry‐climate model simulations forced by realistic Hunga perturbations reveal large‐scale cooling in the Southern Hemisphere (SH) tropical to subtropical stratosphere following the Hunga eruption. This study analyzes the drivers of this cooling, including the distinctive role of anomalies in water vapor, ozone, and sulfate aerosol concentration on the simulated climate response to the Hunga volcanic forcing, based on climate simulations with prescribed chemistry/aerosol. Simulated circulation and temperature anomalies based on specified‐chemistry simulations show good agreement with previous coupled‐chemistry simulations and indicate that each forcing of ozone, water vapor, and sulfate aerosol from the Hunga volcanic eruption contributed to the circulation and temperature anomalies in the SH stratosphere. Our results also suggest that (a) the large‐scale stratospheric cooling during the austral winter was mainly induced by changes in dynamical processes, not by radiative processes, and that (b) the radiative feedback from negative ozone anomalies contributed to the prolonged cold temperature anomalies in the lower stratosphere (∼70 hPa level) and hence to long lasting cold conditions of the polar vortex. 
    more » « less
  2. Abstract Atmospheric chemistry plays a crucial role in Earth system models (ESMs), controlling atmospheric composition and radiative balance; it is highly interactive with the physical climate, biogeochemical cycles, and human systems. However, it often imposes computational challenges in an ESM. Here we develop a full troposphere‐stratosphere interactive chemistry module for the US Department of Energy's Energy Exascale Earth System Model (E3SM). We intentionally build a streamlined module based on E3SM version 2 that interacts with other components and maintains all of major chemical and chemistry‐climate feedbacks. The module incorporates a new, highly efficient tracer advection scheme; linearization of stratospheric chemistry; and abridged tropospheric chemical mechanism with 28 reactive tracers. This new model, E3SM‐chem, can readily perform century‐long climate simulations of ozone, methane, and nitrous oxide based on emission scenarios as well as provide hourly budgets for the gas‐phase radicals that drive aerosol chemistry. We evaluate E3SM‐chem with an atmosphere‐only simulation as in the recent climate model intercomparison project (CMIP6) finding results similar to the other CMIP6 models. For the present‐day, E3SM‐chem matches the standard measurement metrics for stratospheric and tropospheric ozone, surface air quality, other key reactive gases like carbon monoxide, and the methane lifetime. Overall, E3SM‐chem maintains the climate fidelity of the baseline model while adding at most 20% to the computational cost of the atmosphere model. Hence, interactive chemistry can be a default configuration for long climate simulations at resolutions of 1° or finer, which is crucial for producing self‐consistent chemistry‐climate feedbacks that alter the climate system. 
    more » « less
  3. The impact of the quasi‐biennial oscillation (QBO) on tropical convection and precipitation is investigated through nudging experiments using the UK Met Office Hadley Center Unified Model. The model control simulations show robust links between the internally generated QBO and tropical precipitation and circulation. The model zonal wind in the tropical stratosphere was nudged above 90 hPa in atmosphere‐only and coupled ocean‐atmosphere configurations. The convection and precipitation in the atmosphere‐only simulations do not differ between the experiments with and without nudging, which may indicate that SST‐convection coupling is needed for any QBO influence on the tropical lower troposphere and surface. In the coupled experiments, the precipitation and sea‐surface temperature relationships with the QBO phase disappear when nudging is applied. Imposing a realistic QBO‐driven static stability anomaly in the upper‐troposphere lower‐stratosphere is not sufficient to simulate tropical surface impacts. The nudging reduced the influence of the lower troposphere on the upper branch of the Walker circulation, irrespective of the QBO, indicating that the upper tropospheric zonal circulation has been decoupled from the surface by the nudging. These results suggest that grid‐point nudging mutes relevant feedback processes occurring at the tropopause level, including high cloud radiative effects and wave mean flow interactions, which may play a key role in stratospheric‐tropospheric coupling. 
    more » « less
  4. Abstract This paper describes the atmospheric component of the US Department of Energy's Energy Exascale Earth System Model (E3SM) version 3. Significant updates have been made to the atmospheric physics compared to earlier versions. Specifically, interactive gas chemistry has been implemented, along with improved representations of aerosols and dust emissions. A new stratiform cloud microphysics scheme more physically treats ice processes and aerosol‐cloud interactions. The deep convection parameterization has been largely improved with sophisticated microphysics for convective clouds, making model convection sensitive to large‐scale dynamics, and incorporating the dynamical and physical effects of organized mesoscale convection. Improvements in aerosol wet removal processes and parameter re‐tuning of key aerosol and cloud processes have improved model aerosol radiative forcing. The model's vertical resolution has increased from 72 to 80 layers with the extra eight layers added in the lower stratosphere to better simulate the Quasi‐Biennial Oscillation. These improvements have enhanced E3SM's capability to couple aerosol, chemistry, and biogeochemistry and reduced some long‐standing biases in simulating tropical variability. Compared to its predecessors, the model shows a much stronger signal for the Madden‐Julian Oscillation, Kelvin waves, mixed Rossby‐gravity waves, and eastward inertia‐gravity waves. Aerosol radiative forcing has been considerably reduced and is now better aligned with community best estimates, leading to significantly improved skill in simulating historical temperature records. Its simulated mean‐state climate is largely comparable to E3SMv2, but with some notable degradation in shortwave cloud radiative effect, precipitable water, and surface wind stress, which will be addressed in future updates. 
    more » « less
  5. Abstract. Climate variability is typically amplified towards polar regions. The underlying causes, notably albedo and humidity changes, are challenging to accurately quantify with observations or models, thus hampering projections of future polar amplification. Polar amplification reconstructions from the ice-free early Eocene (∼56–48 Ma) can exclude ice albedo effects, but the required tropical temperature records for resolving timescales shorter than multi-million years are lacking. Here, we reconstruct early Eocene tropical sea surface temperature variability by presenting an up to ∼4 kyr resolution biomarker-based temperature record from Ocean Drilling Program (ODP) Site 959, located in the tropical Atlantic Ocean. This record shows warming across multiple orbitally paced carbon cycle perturbations, coeval with high-latitude-derived deep-ocean bottom waters, showing that these events represent transient global warming events (hyperthermals). This implies that orbital forcing caused global temperature variability through carbon cycle feedbacks. Importantly, deep-ocean temperature variability was amplified by a factor of 1.7–2.3 compared to the tropical surface ocean, corroborating available long-term estimates. This implies that fast atmospheric feedback processes controlled meridional temperature gradients on multi-million year, as well as orbital, timescales during the early Eocene. Our combined records have several other implications. First, our amplification factor is somewhat larger than the same metric in fully coupled simulations of the early Eocene (1.1–1.3), suggesting that models slightly underestimate the non-ice-related – notably hydrological – feedbacks that cause polar amplification of climate change. Second, even outside the hyperthermals, we find synchronous eccentricity-forced temperature variability in the tropics and deep ocean that represent global mean sea surface temperature variability of up to 0.7 °C, which requires significant variability in atmospheric pCO2. We hypothesize that the responsible carbon cycle feedbacks that are independent of ice, snow, and frost-related processes might play an important role in Phanerozoic orbital-scale climate variability throughout geological time, including Pleistocene glacial–interglacial climate variability. 
    more » « less