skip to main content


Title: Global acceleration in rates of vegetation change over the past 18,000 years

Global vegetation over the past 18,000 years has been transformed first by the climate changes that accompanied the last deglaciation and again by increasing human pressures; however, the magnitude and patterns of rates of vegetation change are poorly understood globally. Using a compilation of 1181 fossil pollen sequences and newly developed statistical methods, we detect a worldwide acceleration in the rates of vegetation compositional change beginning between 4.6 and 2.9 thousand years ago that is globally unprecedented over the past 18,000 years in both magnitude and extent. Late Holocene rates of change equal or exceed the deglacial rates for all continents, which suggests that the scale of human effects on terrestrial ecosystems exceeds even the climate-driven transformations of the last deglaciation. The acceleration of biodiversity change demonstrated in ecological datasets from the past century began millennia ago.

 
more » « less
Award ID(s):
1929460 1929476 1948227 1948659 1948926 1948628 1948386 1948340 1929563
NSF-PAR ID:
10230248
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
372
Issue:
6544
ISSN:
0036-8075
Page Range / eLocation ID:
p. 860-864
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In the southern Great Lakes Region, North America, between 19,000 and 8,000 years ago, temperatures rose by 2.5–6.5°C and sprucePiceaforests/woodlands were replaced by mixed‐deciduous or pinePinusforests. The demise ofPiceaforests/woodlands during the last deglaciation offers a model system for studying how changing climate and disturbance regimes interact to trigger declines of dominant species and vegetation‐type conversions.

    The role of rising temperatures in driving the regional demise ofPiceaforests/woodlands is widely accepted, but the role of fire is poorly understood. We studied the effect of changing fire activity onPiceadeclines and rates of vegetation composition change using fossil pollen and macroscopic charcoal from five high‐resolution lake sediment records.

    The decline ofPiceaforests/woodlands followed two distinct patterns. At two sites (Stotzel‐Leis and Silver Lake), fire activity reached maximum levels during the declines and both charcoal accumulation rates and fire frequency were significantly and positively associated with vegetation composition change rates. At these sites,Piceadeclined to low levels by 14 kyr BP and was largely replaced by deciduous hardwood taxa like ashFraxinus, hop‐hornbeam/hornbeamOstrya/Carpinusand elmUlmus. However, this ecosystem transition was reversible, asPiceare‐established at lower abundances during the Younger Dryas.

    At the other three sites, there was no statistical relationship between charcoal accumulation and vegetation composition change rates, though fire frequency was a significant predictor of rates of vegetation change at Appleman Lake and Triangle Lake Bog. At these sites,Piceadeclined gradually over several thousand years, was replaced by deciduous hardwoods and high levels ofPinusand did not re‐establish during the Younger Dryas.

    Synthesis. Fire does not appear to have been necessary for the climate‐driven loss ofPiceawoodlands during the last deglaciation, but increased fire frequency accelerated the decline ofPiceain some areas by clearing the way for thermophilous deciduous hardwood taxa. Hence, warming and intensified fire regimes likely interacted in the past to cause abrupt losses of coniferous forests and could again in the coming decades.

     
    more » « less
  2. Abstract. Over the last century, northwestern Canada experienced some of the highest rates of tropospheric warming globally, which caused glaciers in the region to rapidly retreat. Our study seeks to extend the record of glacier fluctuations and assess climate drivers prior to the instrumental record in the Mackenzie and Selwyn mountains of northwestern Canada. We collected 27 10Be surface exposure ages across nine cirque and valley glacier moraines to constrain the timing of their emplacement. Cirque and valley glaciers in this region reached their greatest Holocene extents in the latter half of the Little Ice Age (1600–1850 CE). Four erratic boulders, 10–250 m distal from late Holocene moraines, yielded 10Be exposure ages of 10.9–11.6 ka, demonstrating that by ca. 11 ka, alpine glaciers were no more extensive than during the last several hundred years. Estimated temperature change obtained through reconstruction of equilibrium line altitudes shows that since ca. 1850 CE, mean annual temperatures have risen 0.2–2.3 ∘C. We use our glacier chronology and the Open Global Glacier Model (OGGM) to estimate that from 1000 CE, glaciers in this region reached a maximum total volume of 34–38 km3 between 1765 and 1855 CE and had lost nearly half their ice volume by 2019 CE. OGGM was unable to produce modeled glacier lengths that match the timing or magnitude of the maximum glacier extent indicated by the 10Be chronology. However, when applied to the entire Mackenzie and Selwyn mountain region, past millennium OGGM simulations using the Max Planck Institute Earth System Model (MPI-ESM) and the Community Climate System Model 4 (CCSM4) yield late Holocene glacier volume change temporally consistent with our moraine and remote sensing record, while the Meteorological Research Institute Earth System Model 2 (MRI-ESM2) and the Model for Interdisciplinary Research on Climate (MIROC) fail to produce modeled glacier change consistent with our glacier chronology. Finally, OGGM forced by future climate projections under varying greenhouse gas emission scenarios predicts 85 % to over 97 % glacier volume loss by the end of the 21st century. The loss of glaciers from this region will have profound impacts on local ecosystems and communities that rely on meltwater from glacierized catchments.

     
    more » « less
  3. Abstract Aim

    Ongoing and future anthropogenic climate change poses one of the greatest threats to biodiversity, affecting species distributions and ecological interactions. In the Amazon, climatic changes are expected to induce warming, disrupt precipitation patterns and of particular concern, to increase the intensity and frequency of droughts. Yet the response of ecosystems to intense warm, dry events is not well understood. In the Andes the mid‐Holocene dry event (MHDE),c. 9,000 to 4,000 years ago, was the warmest and driest period of the last 100,000 years which coincided with changes in evaporation and precipitation that caused lake levels to drop over most of tropical South America. This event probably approximates our near‐climatic future, and a critical question is:How much did vegetation change in response to this forcing?

    Location

    Lake Pata, Brazilian Western Amazonia.

    Taxon

    Terrestrial and aquatic plants.

    Methods

    We used pollen, charcoal, total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N data from a new high‐resolution core that spans the lastc. 7,600 years history of Lake Pata.

    Results

    We found that in the wettest section of Amazonia changes associated with the MHDE were detected in the geochemistry analysis but that vegetation changed very little in response to drought during the Holocene. This is the first high‐resolution core without apparent hiatuses that spans most of the Holocene (last 7,600 cal yrbp) from Lake Pata, Brazil. Changes in the organic geochemistry of sediments indicated that between c. 6,500 and 3,600 cal yrbplake levels dropped. Vegetation, however, showed little change as near‐modern forests were seen throughout the record, evidencing the substantial resilience of this system. Only a few species replacements and minor fluctuations in abundance were observed in the pollen record.

    Main conclusions

    The mid‐Holocene warming and reduced precipitation had a limited impact on western Amazonian forests. We attribute much of the resilience to a lack of fire in this system, and that if human‐set fires were to be introduced, the forest destruction from that cause would override that induced by climate alone.

     
    more » « less
  4. Abstract

    Tropical ecosystems are under increasing pressure from land‐use change and deforestation. Changes in tropical forest cover are expected to affect carbon and water cycling with important implications for climatic stability at global scales. A major roadblock for predicting how tropical deforestation affects climate is the lack of baseline conditions (i.e., prior to human disturbance) of forest–savanna dynamics. To address this limitation, we developed a long‐term analysis of forest and savanna distribution across the Amazon–Cerrado transition of central Brazil. We used soil organic carbon isotope ratios as a proxy for changes in woody vegetation cover over time in response to fluctuations in precipitation inferred from speleothem oxygen and strontium stable isotope records. Based on stable isotope signatures and radiocarbon activity of organic matter in soil profiles, we quantified the magnitude and direction of changes in forest and savanna ecosystem cover. Using changes in tree cover measured in 83 different locations for forests and savannas, we developed interpolation maps to assess the coherence of regional changes in vegetation. Our analysis reveals a broad pattern of woody vegetation expansion into savannas and densification within forests and savannas for at least the past ~1,600 years. The rates of vegetation change varied significantly among sampling locations possibly due to variation in local environmental factors that constrain primary productivity. The few instances in which tree cover declined (7.7% of all sampled profiles) were associated with savannas under dry conditions. Our results suggest a regional increase in moisture and expansion of woody vegetation prior to modern deforestation, which could help inform conservation and management efforts for climate change mitigation. We discuss the possible mechanisms driving forest expansion and densification of savannas directly (i.e., increasing precipitation) and indirectly (e.g., decreasing disturbance) and suggest future research directions that have the potential to improve climate and ecosystem models.

     
    more » « less
  5. Over the last few million years, Africa’s climate exhibits a long-term drying trend with episodes of high climate variability coinciding with the intensification of glacial-interglacial cycles. Of particular interest, is a shift to drier and more variable conditions noted in the Olorgesailie Formation (Kenya) between 500 and 300 thousand years ago (ka) in which Potts et al. (2018) observed a turnover of ~85% of large-body mammalian fauna to smaller-body related taxa and suggested that the shift was an evolutionary response to better adapt to the changing climate. However, an erosional gap in the Olorgesailie record during this time interval means that the cause of this faunal shift is still an outstanding question. To understand East African climate variability during the Mid-Pleistocene, we analyze Lake Malawi drill core MAL 05–1 (~11ºS, 34ºE) to investigate if a specific climatic event stands out as a possible driver of the dramatic change observed in the East African mammal community. We use organic geochemical proxies including branched glycerol diaklyl glycerol tetraethers (brGDGTs; the MBT′5ME index) andleaf wax carbon and deuterium isotopes to develop high-resolution temperature, vegetation, and precipitation records, respectively, between 600 and 200 ka. Results show an abrupt temperature increase of ~9°C occurring in less than 3000 years during Glacial Termination V, which is the Marine Isotope Stage (MIS) 12 to MIS 11 transition at ~330 ka. Preliminary leaf wax deuterium isotopic values show an enrichment that coincides with deglacial warmings suggesting a shift to more arid conditions during interglacial than in glacial periods. This change from a cold/wet glacial to a warm/dry interglacial contrast with the cool/dry pattern of the Last Glacial Maximum (LGM) in East Africa which transitioned to a warm/wet Holocene. Leaf wax carbon isotopes are presently being analyzed to understand past shifts in C3 vs C4 vegetation type, which can be related to climatic conditions. We propose that the major warming and drying during Termination V in East Africa represents a significant abrupt change in the climate of eastern Africa and was a likely driver of the major faunal turnover noted in the region. 
    more » « less