skip to main content


Title: Global acceleration in rates of vegetation change over the past 18,000 years

Global vegetation over the past 18,000 years has been transformed first by the climate changes that accompanied the last deglaciation and again by increasing human pressures; however, the magnitude and patterns of rates of vegetation change are poorly understood globally. Using a compilation of 1181 fossil pollen sequences and newly developed statistical methods, we detect a worldwide acceleration in the rates of vegetation compositional change beginning between 4.6 and 2.9 thousand years ago that is globally unprecedented over the past 18,000 years in both magnitude and extent. Late Holocene rates of change equal or exceed the deglacial rates for all continents, which suggests that the scale of human effects on terrestrial ecosystems exceeds even the climate-driven transformations of the last deglaciation. The acceleration of biodiversity change demonstrated in ecological datasets from the past century began millennia ago.

 
more » « less
Award ID(s):
1929460 1929476 1948227 1948659 1948926 1948628 1948386 1948340 1929563
NSF-PAR ID:
10230248
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
372
Issue:
6544
ISSN:
0036-8075
Page Range / eLocation ID:
p. 860-864
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In the southern Great Lakes Region, North America, between 19,000 and 8,000 years ago, temperatures rose by 2.5–6.5°C and sprucePiceaforests/woodlands were replaced by mixed‐deciduous or pinePinusforests. The demise ofPiceaforests/woodlands during the last deglaciation offers a model system for studying how changing climate and disturbance regimes interact to trigger declines of dominant species and vegetation‐type conversions.

    The role of rising temperatures in driving the regional demise ofPiceaforests/woodlands is widely accepted, but the role of fire is poorly understood. We studied the effect of changing fire activity onPiceadeclines and rates of vegetation composition change using fossil pollen and macroscopic charcoal from five high‐resolution lake sediment records.

    The decline ofPiceaforests/woodlands followed two distinct patterns. At two sites (Stotzel‐Leis and Silver Lake), fire activity reached maximum levels during the declines and both charcoal accumulation rates and fire frequency were significantly and positively associated with vegetation composition change rates. At these sites,Piceadeclined to low levels by 14 kyr BP and was largely replaced by deciduous hardwood taxa like ashFraxinus, hop‐hornbeam/hornbeamOstrya/Carpinusand elmUlmus. However, this ecosystem transition was reversible, asPiceare‐established at lower abundances during the Younger Dryas.

    At the other three sites, there was no statistical relationship between charcoal accumulation and vegetation composition change rates, though fire frequency was a significant predictor of rates of vegetation change at Appleman Lake and Triangle Lake Bog. At these sites,Piceadeclined gradually over several thousand years, was replaced by deciduous hardwoods and high levels ofPinusand did not re‐establish during the Younger Dryas.

    Synthesis. Fire does not appear to have been necessary for the climate‐driven loss ofPiceawoodlands during the last deglaciation, but increased fire frequency accelerated the decline ofPiceain some areas by clearing the way for thermophilous deciduous hardwood taxa. Hence, warming and intensified fire regimes likely interacted in the past to cause abrupt losses of coniferous forests and could again in the coming decades.

     
    more » « less
  2. Abstract Aim

    Ongoing and future anthropogenic climate change poses one of the greatest threats to biodiversity, affecting species distributions and ecological interactions. In the Amazon, climatic changes are expected to induce warming, disrupt precipitation patterns and of particular concern, to increase the intensity and frequency of droughts. Yet the response of ecosystems to intense warm, dry events is not well understood. In the Andes the mid‐Holocene dry event (MHDE),c. 9,000 to 4,000 years ago, was the warmest and driest period of the last 100,000 years which coincided with changes in evaporation and precipitation that caused lake levels to drop over most of tropical South America. This event probably approximates our near‐climatic future, and a critical question is:How much did vegetation change in response to this forcing?

    Location

    Lake Pata, Brazilian Western Amazonia.

    Taxon

    Terrestrial and aquatic plants.

    Methods

    We used pollen, charcoal, total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N data from a new high‐resolution core that spans the lastc. 7,600 years history of Lake Pata.

    Results

    We found that in the wettest section of Amazonia changes associated with the MHDE were detected in the geochemistry analysis but that vegetation changed very little in response to drought during the Holocene. This is the first high‐resolution core without apparent hiatuses that spans most of the Holocene (last 7,600 cal yrbp) from Lake Pata, Brazil. Changes in the organic geochemistry of sediments indicated that between c. 6,500 and 3,600 cal yrbplake levels dropped. Vegetation, however, showed little change as near‐modern forests were seen throughout the record, evidencing the substantial resilience of this system. Only a few species replacements and minor fluctuations in abundance were observed in the pollen record.

    Main conclusions

    The mid‐Holocene warming and reduced precipitation had a limited impact on western Amazonian forests. We attribute much of the resilience to a lack of fire in this system, and that if human‐set fires were to be introduced, the forest destruction from that cause would override that induced by climate alone.

     
    more » « less
  3. Abstract

    Tropical ecosystems are under increasing pressure from land‐use change and deforestation. Changes in tropical forest cover are expected to affect carbon and water cycling with important implications for climatic stability at global scales. A major roadblock for predicting how tropical deforestation affects climate is the lack of baseline conditions (i.e., prior to human disturbance) of forest–savanna dynamics. To address this limitation, we developed a long‐term analysis of forest and savanna distribution across the Amazon–Cerrado transition of central Brazil. We used soil organic carbon isotope ratios as a proxy for changes in woody vegetation cover over time in response to fluctuations in precipitation inferred from speleothem oxygen and strontium stable isotope records. Based on stable isotope signatures and radiocarbon activity of organic matter in soil profiles, we quantified the magnitude and direction of changes in forest and savanna ecosystem cover. Using changes in tree cover measured in 83 different locations for forests and savannas, we developed interpolation maps to assess the coherence of regional changes in vegetation. Our analysis reveals a broad pattern of woody vegetation expansion into savannas and densification within forests and savannas for at least the past ~1,600 years. The rates of vegetation change varied significantly among sampling locations possibly due to variation in local environmental factors that constrain primary productivity. The few instances in which tree cover declined (7.7% of all sampled profiles) were associated with savannas under dry conditions. Our results suggest a regional increase in moisture and expansion of woody vegetation prior to modern deforestation, which could help inform conservation and management efforts for climate change mitigation. We discuss the possible mechanisms driving forest expansion and densification of savannas directly (i.e., increasing precipitation) and indirectly (e.g., decreasing disturbance) and suggest future research directions that have the potential to improve climate and ecosystem models.

     
    more » « less
  4. Summer warming is driving a greening trend across the Arctic, with the potential for large-scale amplification of climate change due to vegetation-related feedbacks [Pearson et al.,Nat. Clim. Chang.(3), 673–677 (2013)]. Because observational records are sparse and temporally limited, past episodes of Arctic warming can help elucidate the magnitude of vegetation response to temperature change. The Last Interglacial ([LIG], 129,000 to 116,000 y ago) was the most recent episode of Arctic warming on par with predicted 21st century temperature change [Otto-Bliesner et al.,Philos. Trans. A Math. Phys. Eng. Sci.(371), 20130097 (2013) and Post et al.,Sci.Adv. (5), eaaw9883 (2019)]. However, high-latitude terrestrial records from this period are rare, so LIG vegetation distributions are incompletely known. Pollen-based vegetation reconstructions can be biased by long-distance pollen transport, further obscuring the paleoenvironmental record. Here, we present a LIG vegetation record based on ancient DNA in lake sediment and compare it with fossil pollen. Comprehensive plant community reconstructions through the last and current interglacial (the Holocene) on Baffin Island, Arctic Canada, reveal coherent climate-driven community shifts across both interglacials. Peak LIG warmth featured a ∼400-km northward range shift of dwarf birch, a key woody shrub that is again expanding northward. Greening of the High Arctic—documented here by multiple proxies—likely represented a strong positive feedback on high-latitude LIG warming. Authenticated ancient DNA from this lake sediment also extends the useful preservation window for the technique and highlights the utility of combining traditional and molecular approaches for gleaning paleoenvironmental insights to better anticipate a warmer future.

     
    more » « less
  5. Abstract

    Oxygen isotope speleothems have been widely used to infer past climate changes over tropical South America (TSA). However, the spatial patterns of the millennial precipitation and precipitationδ18O (δ18Op) response have remained controversial, and their response mechanisms are unclear. In particular, it is not clear whether the regional precipitation represents the intensity of the millennial South American summer monsoon (SASM). Here, we study the TSA hydroclimate variability during the last deglaciation (20–11 ka ago) by combining transient simulations of an isotope-enabled Community Earth System Model (iCESM) and the speleothem records over the lowland TSA. Our model reasonably simulates the deglacial evolution of hydroclimate variables and water isotopes over the TSA, albeit underestimating the amplitude of variability. North Atlantic meltwater discharge is the leading factor driving the TSA’s millennial hydroclimate variability. The spatial pattern of both precipitation andδ18Opshow a northwest–southeast dipole associated with the meridional migration of the intertropical convergence zone, instead of a continental-wide coherent change as inferred in many previous works on speleothem records. The dipole response is supported by multisource paleoclimate proxies. In response to increased meltwater forcing, the SASM weakened (characterized by a decreased low-level easterly wind) and consequently reduced rainfall in the western Amazon and increased rainfall in eastern Brazil. A similar dipole response is also generated by insolation, ice sheets, and greenhouse gases, suggesting an inherent stability of the spatial characteristics of the SASM regardless of the external forcing and time scales. Finally, we discuss the potential reasons for the model–proxy discrepancy and pose the necessity to build more paleoclimate proxy data in central-western Amazon.

    Significance Statement

    We want to reconcile the controversy on whether there is a coherent or heterogeneous response in millennial hydroclimate over tropical South America and to clearly understand the forcing mechanisms behind it. Our isotope-enabled transient simulations fill the gap in speleothem reconstructions to capture a complete picture of millennial precipitation/δ18Opand monsoon intensity change. We highlight a heterogeneous dipole response in precipitation andδ18Opon millennial and orbital time scales. Increased meltwater discharge shifts ITCZ southward and favors a wet condition in coastal Brazil. Meanwhile, the low-level easterly and the summer monsoon intensity reduced, causing a dry condition in the central-western Amazon. However, the millennial variability of hydroclimate response is underestimated in our model, together with the lack of direct paleoclimate proxies in the central-west Amazon, complicating the interpretation of changes in specific paleoclimate events and posing a challenge to constraining the spatial range of the dipole. Therefore, we emphasize the necessity to increase the source of proxies, enhance proxy interpretations, and improve climate model performance in the future.

     
    more » « less