skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhancement of lithium in red clump stars by the additional energy loss induced by new physics
ABSTRACT Since 7Li is easily destroyed in low temperatures, the surface lithium abundance decreases as stars evolve. This is supported by the lithium depletion observed in the atmosphere of most red giants. However, recent studies show that almost all of red clump stars have high lithium abundances A(Li) > −0.9, which are not predicted by the standard theory of the low-mass stellar evolution. In order to reconcile the discrepancy between the observations and the model, we consider additional energy loss channels that may come from physics beyond the Standard Model. A(Li) slightly increases near the tip of the red giant branch even in the standard model with thermohaline mixing because of the 7Be production by the Cameron–Fowler mechanism, but the resultant 7Li abundance is much lower than the observed values. We find that the production of 7Be becomes more active if there are additional energy loss channels, because themohaline mixing becomes more efficient and a heavier helium core is formed.  more » « less
Award ID(s):
1806368 1630782 2020275
PAR ID:
10230417
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
503
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2746 to 2753
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Since 7Li is easily destroyed in low temperatures, the surface lithium abundance decreases as stars evolve. This is supported by the lithium depletion observed in the atmosphere of most red giants. However, recent studies show that almost all of red clump stars have high lithium abundances A(Li)>-0.9, which are not predicted by the standard theory of the low-mass stellar evolution. In order to reconcile the discrepancy between the observations and the model, we consider an additional energy loss induced by a neutrino magnetic moment. A(Li) slightly increases near the tip of the red giant branch even in the standard model with thermohaline mixing because of the 7Be production by the Cameron-Fowler mechanism, but the resultant 7Li abundance is much lower than the observed values. We find that the production of 7Be becomes more active if the neutrino magnetic moment is invoked, because themohaline mixing becomes more efficient and a heavier helium core is formed because of the delay of the helium flash. The discrepancy is mitigated when the neutrino magnetic moment of (2-5)*10^{-12}mu_B is applied, where mu_B is the Bohr magneton. 
    more » « less
  2. ABSTRACT We analyse high-resolution spectra of two classical novae that exploded in the Small Magellanic Cloud (SMC). 7Be ii resonance transitions are detected in both ASASSN-19qv and ASASSN-20ni novae. This is the first detection outside the Galaxy and confirms that thermo-nuclear runaway reactions, leading to the 7Be formation, are effective also in the low-metallicity regime, characteristic of the SMC. Derived yields are of N(7Be = 7Li)/N(H)  = (5.3 ± 0.2) × 10−6 which are a factor 4 lower than the typical values of the Galaxy. Inspection of two historical novae in the Large Magellanic Cloud observed with IUE in 1991 and 1992 showed also the possible presence of 7Be and similar yields. For an ejecta of MH, ej = 10−5 M⊙, the amount of 7Li produced is of $$M_{^7 Li} = (3.7 \pm 0.6) \times 10^{-10}$$ M⊙ per nova event. Detailed chemical evolutionary model for the SMC shows that novae could have made an amount of lithium in the SMC corresponding to a fractional abundance of A(Li) ≈ 2.6. Therefore, it is argued that a comparison with the abundance of Li in the SMC, as measured by its interstellar medium, could effectively constrain the amount of the initial abundance of primordial Li, which is currently controversial. 
    more » « less
  3. Abstract Known sources of lithium (Li) in the universe include the Big Bang, novae, asymptotic giant branch stars, and cosmic-ray spallation. During their longer-lived evolutionary phases, stars are not expected to add to the Li budget of the Galaxy, but to largely deplete it. In this context, recent analyses of Li data from GALAH and LAMOST for field red clump (RC) stars have concluded that there is the need for a new production channel of Li, ubiquitous among low-mass stars, and that would be triggered on the upper red giant branch (RGB) or at helium ignition. This is distinct from the Li-rich giant problem and reflects bulk RC star properties. We provide an analysis of the GALAH Li data that accounts for the distribution of progenitor masses of field RC stars observed today. Such progenitors are different than today’s field RGB stars. Using standard post-main-sequence stellar evolution, we show that the distribution of Li among field RC giants as observed by GALAH is consistent with standard model predictions, and does not require new Li production mechanisms. Our model predicts a large fraction of very low Li abundances from low-mass progenitors, with higher abundances from higher mass ones. Moreover, there should be a large number of upper limits for RC giants, and higher abundances should correspond to higher masses. The most recent GALAH data indeed confirm the presence of large numbers of upper limits, and a much lower mean Li abundance in RC stars, in concordance with our interpretation. 
    more » « less
  4. ABSTRACT Standard stellar evolution theory poorly predicts the surface abundances of chemical species in low-mass, red giant branch (RGB) stars. Observations show an enhancement of p–p chain and CNO cycle products in red giant envelopes, which suggests the existence of non-canonical mixing that brings interior burning products to the surface of these stars. The 12C/13C ratio is a highly sensitive abundance metric used to probe this mixing. We investigate extra RGB mixing by examining: (1) how 12C/13C is altered along the RGB, and (2) how 12C/13C changes for stars of varying age and mass. Our sample consists of 43 red giants, spread over 15 open clusters from the Sloan Digital Sky Survey’s APOGEE DR17, that have reliable 12C/13C ratios derived from their APOGEE spectra. We vetted these 12C/13C ratios and compared them as a function of evolution and age/mass to the standard mixing model of stellar evolution, and to a model that includes prescriptions for RGB thermohaline mixing and stellar rotation. We find that the observations deviate from standard mixing models, implying the need for extra mixing. Additionally, some of the abundance patterns depart from the thermohaline model, and it is unclear whether these differences are due to incomplete observations, issues inherent to the model, our assumption of the cause of extra mixing, or any combination of these factors. Nevertheless, the surface abundances across our age/mass range clearly deviate from the standard model, agreeing with the notion of a universal mechanism for RGB extra mixing in low-mass stars. 
    more » « less
  5. ABSTRACT A few per cent of red giants are enriched in lithium with $$A(\mathrm{Li}) \gt 1.5$$. Their evolutionary status has remained uncertain because these Li-rich giants can be placed both on the red giant branch (RGB) near the bump luminosity and in the red clump (RC) region. However, thanks to asteroseismology, it has been found that most of them are actually RC stars. Starting at the bump luminosity, RGB progenitors of the RC stars experience extra mixing in the radiative zone separating the H-burning shell from the convective envelope followed by a series of convective He-shell flashes at the RGB tip, known as the He-core flash. The He-core flash was proposed to cause fast extra mixing in the stars at the RGB tip that is needed for the Cameron–Fowler mechanism to produce Li. We propose that the RGB stars are getting enriched in Li by the RGB extra mixing that is getting enhanced and begins to produce Li, instead of destroying it, when the stars are approaching the RGB tip. After a discussion of several mechanisms of the RGB extra mixing, including the joint operation of rotation-driven meridional circulation and turbulent diffusion, the azimuthal magnetorotational instability (AMRI), thermohaline convection, buoyancy of magnetic flux tubes, and internal gravity waves, and based on results of (magneto-) hydrodynamics simulations and asteroseismology observations, we are inclined to conclude that it is the mechanism of the AMRI or magnetically enhanced thermohaline convection, that is most likely to support our hypothesis. 
    more » « less