skip to main content

This content will become publicly available on July 1, 2023

Title: Mass Matters: No Evidence for Ubiquitous Lithium Production in Low-mass Clump Giants
Abstract Known sources of lithium (Li) in the universe include the Big Bang, novae, asymptotic giant branch stars, and cosmic-ray spallation. During their longer-lived evolutionary phases, stars are not expected to add to the Li budget of the Galaxy, but to largely deplete it. In this context, recent analyses of Li data from GALAH and LAMOST for field red clump (RC) stars have concluded that there is the need for a new production channel of Li, ubiquitous among low-mass stars, and that would be triggered on the upper red giant branch (RGB) or at helium ignition. This is distinct from the Li-rich giant problem and reflects bulk RC star properties. We provide an analysis of the GALAH Li data that accounts for the distribution of progenitor masses of field RC stars observed today. Such progenitors are different than today’s field RGB stars. Using standard post-main-sequence stellar evolution, we show that the distribution of Li among field RC giants as observed by GALAH is consistent with standard model predictions, and does not require new Li production mechanisms. Our model predicts a large fraction of very low Li abundances from low-mass progenitors, with higher abundances from higher mass ones. Moreover, there should more » be a large number of upper limits for RC giants, and higher abundances should correspond to higher masses. The most recent GALAH data indeed confirm the presence of large numbers of upper limits, and a much lower mean Li abundance in RC stars, in concordance with our interpretation. « less
Authors:
; ; ;
Award ID(s):
2001869
Publication Date:
NSF-PAR ID:
10340747
Journal Name:
The Astrophysical Journal
Volume:
933
Issue:
1
Page Range or eLocation-ID:
58
ISSN:
0004-637X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We have gathered near-infraredzyJ-band high-resolution spectra of nearly 300 field red giant stars with known lithium abundances in order to survey their Heiλ10830 absorption strengths. This transition is an indicator of chromospheric activity and/or mass loss in red giants. The majority of stars in our sample reside in the red clump or red horizontal branch based on theirVJ,MVcolor–magnitude diagram, and GaiaTeffand log(g) values. Most of our target stars are Li-poor in the sense of having normally low Li abundances, defined here as logϵ(Li) < 1.25. Over 90% of these Li-poor stars have weakλ10830 features. However, more than half of the 83 Li-rich stars (logϵ(Li) > 1.25) have strongλ10830 absorptions. These largeλ10830 lines signal excess chromospheric activity in Li-rich stars; there is almost no indication of significant mass loss. The Li-rich giants may also have a higher binary fraction than Li-poor stars, based on their astrometric data. It appears likely that both residence on the horizontal branch and present or past binary interaction play roles in the significant Li–He connection established in this survey.

  2. ABSTRACT Since 7Li is easily destroyed in low temperatures, the surface lithium abundance decreases as stars evolve. This is supported by the lithium depletion observed in the atmosphere of most red giants. However, recent studies show that almost all of red clump stars have high lithium abundances A(Li) > −0.9, which are not predicted by the standard theory of the low-mass stellar evolution. In order to reconcile the discrepancy between the observations and the model, we consider additional energy loss channels that may come from physics beyond the Standard Model. A(Li) slightly increases near the tip of the red giant branch even in the standard model with thermohaline mixing because of the 7Be production by the Cameron–Fowler mechanism, but the resultant 7Li abundance is much lower than the observed values. We find that the production of 7Be becomes more active if there are additional energy loss channels, because themohaline mixing becomes more efficient and a heavier helium core is formed.
  3. Since 7Li is easily destroyed in low temperatures, the surface lithium abundance decreases as stars evolve. This is supported by the lithium depletion observed in the atmosphere of most red giants. However, recent studies show that almost all of red clump stars have high lithium abundances A(Li)>-0.9, which are not predicted by the standard theory of the low-mass stellar evolution. In order to reconcile the discrepancy between the observations and the model, we consider an additional energy loss induced by a neutrino magnetic moment. A(Li) slightly increases near the tip of the red giant branch even in the standard model with thermohaline mixing because of the 7Be production by the Cameron-Fowler mechanism, but the resultant 7Li abundance is much lower than the observed values. We find that the production of 7Be becomes more active if the neutrino magnetic moment is invoked, because themohaline mixing becomes more efficient and a heavier helium core is formed because of the delay of the helium flash. The discrepancy is mitigated when the neutrino magnetic moment of (2-5)*10^{-12}mu_B is applied, where mu_B is the Bohr magneton.
  4. Abstract We present WIYN★/Hydra spectra of 34 red giant candidate members of NGC 188, which, together with WOCS† and Gaia data yield 23 single members, 6 binary members, 4 single nonmembers, and 1 binary nonmember. We report [Fe/H] for 29 members and derive [Fe/H]NGC188 = +0.064 ± 0.018 dex (σμ) (sky spectra yield A(Fe)⊙ = 7.520 ± 0.015 dex (σμ)). We discuss effects on the derived parameters of varying Yale-Yonsei isochrones to fit the turnoff. We take advantage of the coolest, lowest-gravity giants to refine the line list near Li 6707.8 Å. Using synthesis we derive detections of A(Li)‡ = 1.17, 1.65, 2.04, and 0.60 dex for stars 4346, 4705, 5027, and 6353, respectively, and 3σ upper-limits for the other members. Whereas only two of the detections meet the traditional criterion for ‘Li-richness’ of A(Li) > 1.5 dex, we argue that since the cluster A(Li) vanish as subgiants evolve to the base of the RGB, all four stars are Li-rich in this cluster’s context. An incidence of even a few Li-rich stars in a sample of 29 stars is far higher than what recent large surveys have found in the field. All four stars lie either slightly or substantially awaymore »from the cluster fiducial sequence, possibly providing clues about their Li-richness. We discuss a number of possibilities for the origin for the Li in each star, and suggest potentially discriminating future observations.« less
  5. Context. With the advent of space-based asteroseismology, determining accurate properties of red-giant stars using their observed oscillations has become the focus of many investigations due to their implications in a variety of fields in astrophysics. Stellar models are fundamental in predicting quantities such as stellar age, and their reliability critically depends on the numerical implementation of the physics at play in this evolutionary phase. Aims. We introduce the Aarhus red giants challenge, a series of detailed comparisons between widely used stellar evolution and oscillation codes that aim to establish the minimum level of uncertainties in properties of red giants arising solely from numerical implementations. We present the first set of results focusing on stellar evolution tracks and structures in the red-giant-branch (RGB) phase. Methods. Using nine state-of-the-art stellar evolution codes, we defined a set of input physics and physical constants for our calculations and calibrated the convective efficiency to a specific point on the main sequence. We produced evolutionary tracks and stellar structure models at a fixed radius along the red-giant branch for masses of 1.0  M ⊙ , 1.5  M ⊙ , 2.0  M ⊙ , and 2.5  M ⊙ , and compared the predicted stellar properties. Results. Oncemore »models have been calibrated on the main sequence, we find a residual spread in the predicted effective temperatures across all codes of ∼20 K at solar radius and ∼30–40 K in the RGB regardless of the considered stellar mass. The predicted ages show variations of 2–5% (increasing with stellar mass), which we attribute to differences in the numerical implementation of energy generation. The luminosity of the RGB-bump shows a spread of about 10% for the considered codes, which translates into magnitude differences of ∼0.1 mag in the optical V -band. We also compare the predicted [C/N] abundance ratio and find a spread of 0.1 dex or more for all considered masses. Conclusions. Our comparisons show that differences at the level of a few percent still remain in evolutionary calculations of red giants branch stars despite the use of the same input physics. These are mostly due to differences in the energy generation routines and interpolation across opacities, and they call for further investigation on these matters in the context of using properties of red giants as benchmarks for astrophysical studies.« less