skip to main content


Title: Countering the winner's curse: Optimal auction design in a common value model
We characterize revenue maximizing mechanisms in a common value environment where the value of the object is equal to the highest of the bidders' independent signals. If the revenue maximizing solution is to sell the object with probability 1, then an optimal mechanism is simply a posted price, namely, the highest price such that every type of every bidder is willing to buy the object. If the object is optimally sold with probability less than 1, then optimal mechanisms skew the allocation toward bidders with lower signals. The resulting allocation induces a “winner's blessing,” whereby the expected value conditional on winning is higher than the unconditional expectation. By contrast, standard auctions that allocate to the bidder with the highest signal (e.g., the first‐price, second‐price, or English auctions) deliver lower revenue because of the winner's curse generated by the allocation. Our qualitative results extend to more general common value environments with a strong winner's curse.  more » « less
Award ID(s):
1459899
NSF-PAR ID:
10230508
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Theoretical Economics
Volume:
15
Issue:
4
ISSN:
1933-6837
Page Range / eLocation ID:
1399 to 1434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Most results in revenue-maximizing mechanism design hinge on “getting the price right”—selling goods to bidders at prices low enough to encourage a sale but high enough to garner nontrivial revenue. This approach is difficult to implement when the seller has little or no a priori information about bidder valuations or when the setting is sufficiently complex, such as matching markets with heterogeneous goods. In this paper, we apply a robust approach to designing auctions for revenue. Instead of relying on prior knowledge regarding bidder valuations, we “let the market do the work” and let prices emerge from competition for scarce goods. We analyze the revenue guarantees of one of the simplest imaginable implementations of this idea: first, we enhance competition in the market by increasing demand (or alternatively, by limiting supply), and second, we run a standard second price (Vickrey) auction. In their renowned work from 1996 , Bulow and Klemperer [Bulow J, Klemperer P (1996) Auctions vs. negotiations. Amer. Econom. Rev. 86(1):180–194.] apply this method to markets with single goods. As our main result, we give the first application beyond single-parameter settings, proving that, simultaneously for many valuation distributions, this method achieves expected revenue at least as good as the optimal revenue in the original market. Our robust and simple approach provides a handle on the elusive optimal revenue in multiitem matching markets and shows when the use of welfare-maximizing Vickrey auctions is justified, even if revenue is a priority. By establishing quantitative tradeoffs, our work provides guidelines for a seller in choosing among two different revenue-extracting strategies: sophisticated pricing based on market research or advertising to draw additional bidders. 
    more » « less
  2. null (Ed.)
    Mechanisms with money are commonly designed under the assumption that agents are quasi-linear, meaning they have linear disutility for spending money. We study the implications when agents with non-linear (specifically, convex) disutility for payments participate in mechanisms designed for quasi-linear agents. We first show that any mechanism that is truthful for quasi-linear buyers has a simple best response function for buyers with non-linear disutility from payments, in which each bidder simply scales down her value for each potential outcome by a fixed factor, equal to her target return on investment (ROI). We call such a strategy ROI-optimal. We prove the existence of a Nash equilibrium in which agents use ROI-optimal strategies for a general class of allocation problems. Motivated by online marketplaces, we then focus on simultaneous second-price auctions for additive bidders and show that all ROI-optimal equilibria in this setting achieve constant-factor approximations to suitable welfare and revenue benchmarks. 
    more » « less
  3. Mature internet advertising platforms offer high-level campaign management tools to help advertisers run their campaigns, often abstracting away the intricacies of how each ad is placed and focusing on aggregate metrics of interest to advertisers. On such platforms, advertisers often participate in auctions through a proxy bidder, so the standard incentive analyses that are common in the literature do not apply directly. In this paper, we take the perspective of a budget management system that surfaces aggregated incentives—instead of individual auctions—and compare first and second price auctions. We show that theory offers surprising endorsement for using a first price auction to sell individual impressions. In particular, first price auctions guarantee uniqueness of the steady-state equilibrium of the budget management system, monotonicity, and other desirable properties, as well as efficient computation through the solution to the well-studied Eisenberg–Gale convex program. Contrary to what one can expect from first price auctions, we show that incentives issues are not a barrier that undermines the system. Using realistic instances generated from data collected at real-world auction platforms, we show that bidders have small regret with respect to their optimal ex post strategy, and they do not have a big incentive to misreport when they can influence equilibria directly by giving inputs strategically. Finally, budget-constrained bidders, who have significant prevalence in real-world platforms, tend to have smaller regrets. Our computations indicate that bidder budgets, pacing multipliers, and regrets all have a positive association in statistical terms. This paper was accepted by Gabriel Weintraub, revenue management and market analytics. Funding: D. Panigrahi was supported in part by the National Science Foundation [Awards CCF 1535972, CCF 1750140, and CCF 1955703]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.4310 . 
    more » « less
  4. We study the menu complexity of optimal and approximately-optimal auctions in the context of the ``FedEx'' problem, a so-called ``one-and-a-half-dimensional'' setting where a single bidder has both a value and a deadline for receiving an item [FGKK 16]. The menu complexity of an auction is equal to the number of distinct (allocation, price) pairs that a bidder might receive [HN 13]. We show the following when the bidder has $n$ possible deadlines: 1) Exponential menu complexity is necessary to be exactly optimal: There exist instances where the optimal mechanism has menu complexity $\geq 2^n-1$. This matches exactly the upper bound provided by Fiat et al.'s algorithm, and resolves one of their open questions [FGKK 16]. 2) Fully polynomial menu complexity is necessary and sufficient for approximation: For all instances, there exists a mechanism guaranteeing a multiplicative $(1-\epsilon)$-approximation to the optimal revenue with menu complexity $O(n^{3/2}\sqrt{\frac{\min\{n/\epsilon,\ln(v_{\max})\}}{\epsilon}}) = O(n^2/\epsilon)$, where $v_{\max}$ denotes the largest value in the support of integral distributions. \item There exist instances where any mechanism guaranteeing a multiplicative $(1-O(1/n^2))$-approximation to the optimal revenue requires menu complexity $\Omega(n^2)$. Our main technique is the polygon approximation of concave functions [Rote 91], and our results here should be of independent interest. We further show how our techniques can be used to resolve an open question of [DW 17] on the menu complexity of optimal auctions for a budget-constrained buyer. 
    more » « less
  5. null (Ed.)
    We identify the first static credible mechanism for multi-item additive auctions that achieves a constant factor of the optimal revenue. This is one instance of a more general framework for designing two-part tariff auctions, adapting the duality framework of Cai et al [CDW16]. Given a (not necessarily incentive compatible) auction format A satisfying certain technical conditions, our framework augments the auction with a personalized entry fee for each bidder, which must be paid before the auction can be accessed. These entry fees depend only on the prior distribution of bidder types, and in particular are independent of realized bids. Our framework can be used with many common auction formats, such as simultaneous first-price, simultaneous second-price, and simultaneous all-pay auctions. If all-pay auctions are used, we prove that the resulting mechanism is credible in the sense that the auctioneer cannot benefit by deviating from the stated mechanism after observing agent bids. If second-price auctions are used, we obtain a truthful O(1)-approximate mechanism with fixed entry fees that are amenable to tuning via online learning techniques. Our results for first price and all-pay are the first revenue guarantees of non-truthful mechanisms in multi-dimensional environments; an open question in the literature [RST17]. 
    more » « less