skip to main content


Title: Pacing Equilibrium in First Price Auction Markets
Mature internet advertising platforms offer high-level campaign management tools to help advertisers run their campaigns, often abstracting away the intricacies of how each ad is placed and focusing on aggregate metrics of interest to advertisers. On such platforms, advertisers often participate in auctions through a proxy bidder, so the standard incentive analyses that are common in the literature do not apply directly. In this paper, we take the perspective of a budget management system that surfaces aggregated incentives—instead of individual auctions—and compare first and second price auctions. We show that theory offers surprising endorsement for using a first price auction to sell individual impressions. In particular, first price auctions guarantee uniqueness of the steady-state equilibrium of the budget management system, monotonicity, and other desirable properties, as well as efficient computation through the solution to the well-studied Eisenberg–Gale convex program. Contrary to what one can expect from first price auctions, we show that incentives issues are not a barrier that undermines the system. Using realistic instances generated from data collected at real-world auction platforms, we show that bidders have small regret with respect to their optimal ex post strategy, and they do not have a big incentive to misreport when they can influence equilibria directly by giving inputs strategically. Finally, budget-constrained bidders, who have significant prevalence in real-world platforms, tend to have smaller regrets. Our computations indicate that bidder budgets, pacing multipliers, and regrets all have a positive association in statistical terms. This paper was accepted by Gabriel Weintraub, revenue management and market analytics. Funding: D. Panigrahi was supported in part by the National Science Foundation [Awards CCF 1535972, CCF 1750140, and CCF 1955703]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.4310 .  more » « less
Award ID(s):
2147361
PAR ID:
10442714
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Management Science
Volume:
68
Issue:
12
ISSN:
0025-1909
Page Range / eLocation ID:
8515 to 8535
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We identify the first static credible mechanism for multi-item additive auctions that achieves a constant factor of the optimal revenue. This is one instance of a more general framework for designing two-part tariff auctions, adapting the duality framework of Cai et al [CDW16]. Given a (not necessarily incentive compatible) auction format A satisfying certain technical conditions, our framework augments the auction with a personalized entry fee for each bidder, which must be paid before the auction can be accessed. These entry fees depend only on the prior distribution of bidder types, and in particular are independent of realized bids. Our framework can be used with many common auction formats, such as simultaneous first-price, simultaneous second-price, and simultaneous all-pay auctions. If all-pay auctions are used, we prove that the resulting mechanism is credible in the sense that the auctioneer cannot benefit by deviating from the stated mechanism after observing agent bids. If second-price auctions are used, we obtain a truthful O(1)-approximate mechanism with fixed entry fees that are amenable to tuning via online learning techniques. Our results for first price and all-pay are the first revenue guarantees of non-truthful mechanisms in multi-dimensional environments; an open question in the literature [RST17]. 
    more » « less
  2. We study the second-price auction in which bidders have asymmetric information regarding the item’s value. Each bidder’s value for the item depends on a private component and a public component. While each bidder observes their own private component, they hold different and asymmetric information about the public component. We characterize the equilibrium of this auction game and study how the asymmetric bidder information affects their equilibrium bidding strategies. We also discover multiple surprisingly counter-intuitive equilibrium phenomena. For instance, a bidder may be better off if she is less informed regarding the public component. Conversely, a bidder may sometimes be worse off if she obtains more accurate estimation about the auctioned item. Our results suggest that efforts devoted by bidders to improve their value estimations, as widely seen in today’s online advertising auctions, may not always be to their benefit. 
    more » « less
  3. Large fractions of online advertisements are sold via repeated second-price auctions. In these auctions, the reserve price is the main tool for the auctioneer to boost revenues. In this work, we investigate the following question: how can the auctioneer optimize reserve prices by learning from the previous bids while accounting for the long-term incentives and strategic behavior of the bidders? To this end, we consider a seller who repeatedly sells ex ante identical items via a second-price auction. Buyers’ valuations for each item are drawn independently and identically from a distribution F that is unknown to the seller. We find that if the seller attempts to dynamically update a common reserve price based on the bidding history, this creates an incentive for buyers to shade their bids, which can hurt revenue. When there is more than one buyer, incentive compatibility can be restored by using personalized reserve prices, where the personal reserve price for each buyer is set using the historical bids of other buyers. Such a mechanism asymptotically achieves the expected revenue obtained under the static Myerson optimal auction for F. Further, if valuation distributions differ across bidders, the loss relative to the Myerson benchmark is only quadratic in the size of such differences. We extend our results to a contextual setting where the valuations of the buyers depend on observed features of the items. When up-front fees are permitted, we show how the seller can determine such payments based on the bids of others to obtain an approximately incentive-compatible mechanism that extracts nearly all the surplus. 
    more » « less
  4. The internet advertising market is a multibillion dollar industry in which advertisers buy thousands of ad placements every day by repeatedly participating in auctions. An important and ubiquitous feature of these auctions is the presence of campaign budgets, which specify the maximum amount the advertisers are willing to pay over a specified time period. In this paper, we present a new model to study the equilibrium bidding strategies in standard auctions, a large class of auctions that includes first and second price auctions, for advertisers who satisfy budget constraints on average. Our model dispenses with the common yet unrealistic assumption that advertisers’ values are independent and instead assumes a contextual model in which advertisers determine their values using a common feature vector. We show the existence of a natural value pacing–based Bayes–Nash equilibrium under very mild assumptions. Furthermore, we prove a revenue equivalence showing that all standard auctions yield the same revenue even in the presence of budget constraints. Leveraging this equivalence, we prove price of anarchy bounds for liquid welfare and structural properties of pacing-based equilibria that hold for all standard auctions. In recent years, the internet advertising market has adopted first price auctions as the preferred paradigm for selling advertising slots. Our work, thus, takes an important step toward understanding the implications of the shift to first price auctions in internet advertising markets by studying how the choice of the selling mechanism impacts revenues, welfare, and advertisers’ bidding strategies. This paper was accepted by Itai Ashlagi, revenue management and market analytics. Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2023.4719 . 
    more » « less
  5. We consider the sample complexity of revenue maximization for multiple bidders in unrestricted multi-dimensional settings. Specifically, we study the standard model of additive bidders whose values for heterogeneous items are drawn independently. For any such instance and any , we show that it is possible to learn an -Bayesian Incentive Compatible auction whose expected revenue is within of the optimal -BIC auction from only polynomially many samples. Our fully nonparametric approach is based on ideas that hold quite generally and completely sidestep the difficulty of characterizing optimal (or near-optimal) auctions for these settings. Therefore, our results easily extend to general multi-dimensional settings, including valuations that are not necessarily even subadditive , and arbitrary allocation constraints. For the cases of a single bidder and many goods, or a single parameter (good) and many bidders, our analysis yields exact incentive compatibility (and for the latter also computational efficiency). Although the single-parameter case is already well understood, our corollary for this case extends slightly the state of the art. 
    more » « less