skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pacing Equilibrium in First Price Auction Markets
Mature internet advertising platforms offer high-level campaign management tools to help advertisers run their campaigns, often abstracting away the intricacies of how each ad is placed and focusing on aggregate metrics of interest to advertisers. On such platforms, advertisers often participate in auctions through a proxy bidder, so the standard incentive analyses that are common in the literature do not apply directly. In this paper, we take the perspective of a budget management system that surfaces aggregated incentives—instead of individual auctions—and compare first and second price auctions. We show that theory offers surprising endorsement for using a first price auction to sell individual impressions. In particular, first price auctions guarantee uniqueness of the steady-state equilibrium of the budget management system, monotonicity, and other desirable properties, as well as efficient computation through the solution to the well-studied Eisenberg–Gale convex program. Contrary to what one can expect from first price auctions, we show that incentives issues are not a barrier that undermines the system. Using realistic instances generated from data collected at real-world auction platforms, we show that bidders have small regret with respect to their optimal ex post strategy, and they do not have a big incentive to misreport when they can influence equilibria directly by giving inputs strategically. Finally, budget-constrained bidders, who have significant prevalence in real-world platforms, tend to have smaller regrets. Our computations indicate that bidder budgets, pacing multipliers, and regrets all have a positive association in statistical terms. This paper was accepted by Gabriel Weintraub, revenue management and market analytics. Funding: D. Panigrahi was supported in part by the National Science Foundation [Awards CCF 1535972, CCF 1750140, and CCF 1955703]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.4310 .  more » « less
Award ID(s):
2147361
PAR ID:
10442714
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Management Science
Volume:
68
Issue:
12
ISSN:
0025-1909
Page Range / eLocation ID:
8515 to 8535
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The design of multi-item, multi-bidder auctions involves a delicate balancing act of economic objectives, bidder incentives, and real-world complexities. Efficient auctions, that is, auctions that allocate items to maximize total bidder value, are practically desirable since they promote the most economically beneficial use of resources. Arguably the biggest drawback of efficient auctions, however, is their potential to generate very low revenue. In this work, we show how the auction designer can artificially inject competition into the auction to boost revenue while striving to maintain efficiency. First, we invent a new auction family that enables the auction designer to specify competition in a precise, expressive, and interpretable way. We then introduce a new model of bidder behavior and individual rationality to understand how bidders act when prices are too competitive. Next, under our bidder behavior model, we use our new competitive auction class to derive the globally revenue-optimal efficient auction under two different knowledge models for the auction designer: knowledge of full bidder value distributions and knowledge of bidder value quantiles. Finally, we study a third knowledge model for the auction designer: knowledge of historical bidder valuation data. In this setting we present sample and computationally efficient learning algorithms that find high-revenue probably-efficient competitive auctions from bidder data. Our learning algorithms are instance adaptive and can be run in parallel across bidders, unlike most prior approaches to data-driven auction design. 
    more » « less
  2. Budget constraints are ubiquitous in online advertisement auctions. To manage these constraints and smooth out the expenditure across auctions, the bidders (or the platform on behalf of them) often employ pacing: each bidder is assigned a pacing multiplier between zero and one, and her bid on each item is multiplicatively scaled down by the pacing multiplier. This naturally gives rise to a game in which each bidder strategically selects a multiplier. The appropriate notion of equilibrium in this game is known as a pacing equilibrium. In this work, we show that the problem of finding an approximate pacing equilibrium is PPAD-complete for second-price auctions. This resolves an open question of Conitzer et al. [Conitzer V, Kroer C, Sodomka E, Stier-Moses NE (2022a) Multiplicative pacing equilibria in auction markets. Oper. Res. 70(2):963–989]. As a consequence of our hardness result, we show that the tâtonnement-style budget-management dynamics introduced by Borgs et al. [Borgs C, Chayes J, Immorlica N, Jain K, Etesami O, Mahdian M (2007) Dynamics of bid optimization in online advertisement auctions. Proc. 16th Internat. Conf. World Wide Web (ACM, New York), 531–540] are unlikely to converge efficiently for repeated second-price auctions. This disproves a conjecture by Borgs et al. [Borgs C, Chayes J, Immorlica N, Jain K, Etesami O, Mahdian M (2007) Dynamics of bid optimization in online advertisement auctions. Proc. 16th Internat. Conf. World Wide Web (ACM, New York), 531–540], under the assumption that the complexity class PPAD is not equal to P. Our hardness result also implies the existence of a refinement of supply-aware market equilibria which is hard to compute with simple linear utilities. Funding: This work was supported by National Science Foundation (CCF-1703925, IIS-1838154). 
    more » « less
  3. null (Ed.)
    We identify the first static credible mechanism for multi-item additive auctions that achieves a constant factor of the optimal revenue. This is one instance of a more general framework for designing two-part tariff auctions, adapting the duality framework of Cai et al [CDW16]. Given a (not necessarily incentive compatible) auction format A satisfying certain technical conditions, our framework augments the auction with a personalized entry fee for each bidder, which must be paid before the auction can be accessed. These entry fees depend only on the prior distribution of bidder types, and in particular are independent of realized bids. Our framework can be used with many common auction formats, such as simultaneous first-price, simultaneous second-price, and simultaneous all-pay auctions. If all-pay auctions are used, we prove that the resulting mechanism is credible in the sense that the auctioneer cannot benefit by deviating from the stated mechanism after observing agent bids. If second-price auctions are used, we obtain a truthful O(1)-approximate mechanism with fixed entry fees that are amenable to tuning via online learning techniques. Our results for first price and all-pay are the first revenue guarantees of non-truthful mechanisms in multi-dimensional environments; an open question in the literature [RST17]. 
    more » « less
  4. We study the second-price auction in which bidders have asymmetric information regarding the item’s value. Each bidder’s value for the item depends on a private component and a public component. While each bidder observes their own private component, they hold different and asymmetric information about the public component. We characterize the equilibrium of this auction game and study how the asymmetric bidder information affects their equilibrium bidding strategies. We also discover multiple surprisingly counter-intuitive equilibrium phenomena. For instance, a bidder may be better off if she is less informed regarding the public component. Conversely, a bidder may sometimes be worse off if she obtains more accurate estimation about the auctioned item. Our results suggest that efforts devoted by bidders to improve their value estimations, as widely seen in today’s online advertising auctions, may not always be to their benefit. 
    more » « less
  5. Large fractions of online advertisements are sold via repeated second-price auctions. In these auctions, the reserve price is the main tool for the auctioneer to boost revenues. In this work, we investigate the following question: how can the auctioneer optimize reserve prices by learning from the previous bids while accounting for the long-term incentives and strategic behavior of the bidders? To this end, we consider a seller who repeatedly sells ex ante identical items via a second-price auction. Buyers’ valuations for each item are drawn independently and identically from a distribution F that is unknown to the seller. We find that if the seller attempts to dynamically update a common reserve price based on the bidding history, this creates an incentive for buyers to shade their bids, which can hurt revenue. When there is more than one buyer, incentive compatibility can be restored by using personalized reserve prices, where the personal reserve price for each buyer is set using the historical bids of other buyers. Such a mechanism asymptotically achieves the expected revenue obtained under the static Myerson optimal auction for F. Further, if valuation distributions differ across bidders, the loss relative to the Myerson benchmark is only quadratic in the size of such differences. We extend our results to a contextual setting where the valuations of the buyers depend on observed features of the items. When up-front fees are permitted, we show how the seller can determine such payments based on the bids of others to obtain an approximately incentive-compatible mechanism that extracts nearly all the surplus. 
    more » « less