- Award ID(s):
- 1909538
- PAR ID:
- 10248826
- Date Published:
- Journal Name:
- Leibniz international proceedings in informatics
- Volume:
- 185
- ISSN:
- 1868-8969
- Page Range / eLocation ID:
- 84:1-84:1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The assignment game, introduced by Shapley and Shubik [1971], is a classic model for two-sided matching markets between buyers and sellers. In the original assignment game, it is assumed that payments lead to transferable utility and that buyers have unit-demand valuations for the items being sold. There has since been substantial work studying various extensions of the assignment game. The first main area of extension is to imperfectly transferable utility, which is when frictions, taxes, or fees impede the transfer of money between agents. The second is with more complex valuation functions, in particular gross substitutes valuations, which describe substitutable goods. Multiple efficient algorithms have been proposed for computing a competitive equilibrium, the standard solution concept in assignment games, in each of these two settings. However, these lines of work have been mostly independent, with no algorithmic results combining the two. Our main result is an efficient algorithm for computing competitive equilibria in a setting encompassing both those generalizations. We assume that sellers have multiple copies of each items. A buyer $i$'s quasi-linear utility is given by their gross substitute valuation for the bundle $S$ of items they are assigned to, minus the sum of the payments $q_{ij}(p_j)$ for each item $j \in S$, where $p_j$ is the price of item $j$ and $q_{ij}$ is piecewise linear, strictly increasing. Our algorithm combines procedures for matroid intersection problems with augmenting forest techniques from matching theory. We also show that in a mild generalization of our model without quasilinear utilities, computing a competitive equilibrium is NP-hard.more » « less
-
Abstract We explore why many recently proposed robust estimation problems are efficiently solvable, even though the underlying optimization problems are non-convex. We study the loss landscape of these robust estimation problems, and identify the existence of ’generalized quasi-gradients’. Whenever these quasi-gradients exist, a large family of no-regret algorithms are guaranteed to approximate the global minimum; this includes the commonly used filtering algorithm. For robust mean estimation of distributions under bounded covariance, we show that any first-order stationary point of the associated optimization problem is an approximate global minimum if and only if the corruption level $\epsilon < 1/3$. Consequently, any optimization algorithm that approaches a stationary point yields an efficient robust estimator with breakdown point $1/3$. With carefully designed initialization and step size, we improve this to $1/2$, which is optimal. For other tasks, including linear regression and joint mean and covariance estimation, the loss landscape is more rugged: there are stationary points arbitrarily far from the global minimum. Nevertheless, we show that generalized quasi-gradients exist and construct efficient algorithms. These algorithms are simpler than previous ones in the literature, and for linear regression we improve the estimation error from $O(\sqrt{\epsilon })$ to the optimal rate of $O(\epsilon )$ for small $\epsilon $ assuming certified hypercontractivity. For mean estimation with near-identity covariance, we show that a simple gradient descent algorithm achieves breakdown point $1/3$ and iteration complexity $\tilde{O}(d/\epsilon ^2)$.more » « less
-
We study the problem of fairly and efficiently allocating indivisible chores among agents with additive disutility functions. We consider the widely used envy-based fairness properties of EF1 and EFX in conjunction with the efficiency property of fractional Pareto-optimality (fPO). Existence (and computation) of an allocation that is simultaneously EF1/EFX and fPO are challenging open problems, and we make progress on both of them. We show the existence of an allocation that is- EF1 + fPO, when there are three agents,- EF1 + fPO, when there are at most two disutility functions,- EFX + fPO, for three agents with bivalued disutility functions.These results are constructive, based on strongly polynomial-time algorithms. We also investigate non-existence and show that an allocation that is EFX+fPO need not exist, even for two agents.
-
This study discusses a security‐constrained unit commitment (SCUC) based optimal power tracing approach, which adopts the proportional power tracing method to trace power flows of the network for simultaneously satisfying physical contract paths and financial contract quantities of bilateral transactions. Thus, optimal solutions of the proposed model, including unit commitment and generation dispatch of generators and angle statuses of phase shifters, would simultaneously meet physical and financial requirements of bilateral transactions, and in turn reduce the impacts of loop flows induced by bilateral transactions to third parties of the networked system. The proposed model is a mixed integer non‐linear programming problem because of the non‐linear proportional power tracing constraints, and the revised outer approximation algorithm is discussed to effectively solve the problem. The effectiveness of the proposed model is further evaluated via an integrated power‐money flow analysis, based on the locational marginal price based energy payments and the min–max fairness policy based transmission usage charges. Numerical case studies show that the proposed model, as compared with traditional financial bilateral transaction models, presents potential advantages to avoid loop flows and reduce the impacts to third parties in terms of energy and transmission usage payments.
-
We consider the crowdsourcing setting where, in response to the assigned tasks, agents strategically decide both how much effort to exert (from a continuum) and whether to manipulate their reports. The goal is to design payment mechanisms that (1) satisfy limited liability (all payments are non-negative), (2) reduce the principal’s cost of budget, (3) incentivize effort and (4) incentivize truthful responses. In our framework, the payment mechanism composes a performance measurement, which noisily evaluates agents’ effort based on their reports, and a payment function, which converts the scores output by the performance measurement to payments. Previous literature suggests applying a peer prediction mechanism combined with a linear payment function. This method can achieve either (1), (3) and (4), or (2), (3) and (4) in the binary effort setting. In this paper, we suggest using a rank-order payment function (tournament). Assuming Gaussian noise, we analytically optimize the rank-order payment function, and identify a sufficient statistic, sensitivity, which serves as a metric for optimizing the performance measurements. This helps us obtain (1), (2) and (3) simultaneously. Additionally, we show that adding noise to agents’ scores can preserve the truthfulness of the performance measurements under the non-linear tournament, which gives us all four objectives. Our real-data estimated agent-based model experiments show that our method can greatly reduce the payment of effort elicitation while preserving the truthfulness of the performance measurement. In addition, we empirically evaluate several commonly used performance measurements in terms of their sensitivities and strategic robustness.more » « less