skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Villafranchian perissodactyls of Italy: knowledge of the fossil record and future research perspectives q
Study of the Italian Villafranchian (Plio-Pleistocene) perissodactyls (tapirs, rhinos and horses) : their systematics, biogeography and paleoecology referenced by lineage turnover Taxonomy and phylogeny are reviewed  more » « less
Award ID(s):
1759882
PAR ID:
10230561
Author(s) / Creator(s):
Date Published:
Journal Name:
Geobios
Volume:
63
Issue:
2020
ISSN:
0016-6995
Page Range / eLocation ID:
1-21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. We study the p-rank stratification of the moduli space of cyclic degree ! covers of the projective line in characteristic p for distinct primes p and !. The main result is about the intersection of the p-rank 0 stratum with the boundary of the moduli space of curves. When ! = 3 and p ≡ 2 mod 3 is an odd prime, we prove that there exists a smooth trielliptic curve in characteristic p, for every genus g, signature type (r,s), and p-rank f satisfying the clear necessary conditions. 
    more » « less
  2. Abstract The detection of GW170817, the first neutron star-neutron star merger observed by Advanced LIGO and Virgo, and its following analyses represent the first contributions of gravitational wave data to understanding dense matter. Parameterizing the high density section of the equation of state of both neutron stars through spectral decomposition, and imposing a lower limit on the maximum mass value, led to an estimate of the stars’ radii ofkm andkm (Abbottet al2018Phys. Rev. Lett.121161101). These values do not, however, take into account any uncertainty owed to the choice of the crust low-density equation of state, which was fixed to reproduce the SLy equation of state model (Douchin and Haensel 2001Astron. Astrophys.380151). We here re-analyze GW170817 data and establish that different crust models do not strongly impact the mass or tidal deformability of a neutron star—it is impossible to distinguish between low-density models with gravitational wave analysis. However, the crust does have an effect on inferred radius. We predict the systematic error due to this effect using neutron star structure equations, and compare the prediction to results from full parameter estimation runs. For GW170817, this systematic error affects the radius estimate by 0.3 km, approximatelyof the neutron stars’ radii. 
    more » « less
  3. null (Ed.)
    In the search for life beyond Earth, distinguishing the living from the non-living is paramount. However, this distinction is often elusive, as the origin of life is likely a stepwise evolutionary process, not a singular event. Regardless of the favored origin of life model, an inherent “grayness” blurs the theorized threshold defining life. Here, we explore the ambiguities between the biotic and the abiotic at the origin of life. The role of grayness extends into later transitions as well. By recognizing the limitations posed by grayness, life detection researchers will be better able to develop methods sensitive to prebiotic chemical systems and life with alternative biochemistries. 
    more » « less
  4. Abstract The Miocene epoch (23.03–5.33 Ma) was a time interval of global warmth, relative to today. Continental configurations and mountain topography transitioned toward modern conditions, and many flora and fauna evolved into the same taxa that exist today. Miocene climate was dynamic: long periods of early and late glaciation bracketed a ∼2 Myr greenhouse interval—the Miocene Climatic Optimum (MCO). Floras, faunas, ice sheets, precipitation,pCO2, and ocean and atmospheric circulation mostly (but not ubiquitously) covaried with these large changes in climate. With higher temperatures and moderately higherpCO2(∼400–600 ppm), the MCO has been suggested as a particularly appropriate analog for future climate scenarios, and for assessing the predictive accuracy of numerical climate models—the same models that are used to simulate future climate. Yet, Miocene conditions have proved difficult to reconcile with models. This implies either missing positive feedbacks in the models, a lack of knowledge of past climate forcings, or the need for re‐interpretation of proxies, which might mitigate the model‐data discrepancy. Our understanding of Miocene climatic, biogeochemical, and oceanic changes on broad spatial and temporal scales is still developing. New records documenting the physical, chemical, and biotic aspects of the Earth system are emerging, and together provide a more comprehensive understanding of this important time interval. Here, we review the state‐of‐the‐art in Miocene climate, ocean circulation, biogeochemical cycling, ice sheet dynamics, and biotic adaptation research as inferred through proxy observations and modeling studies. 
    more » « less
  5. Abstract Dislocation‐based dissipation mechanisms potentially control the viscoelastic response of Earth's upper mantle across a variety of geodynamic contexts, including glacial isostatic adjustment, postseismic creep, and seismic‐wave attenuation. However, there is no consensus on which dislocation‐based, microphysical process controls the viscoelastic behavior of the upper mantle. Although both intergranular (plastic anisotropy) and intragranular (backstress) mechanisms have been proposed, there is currently insufficient laboratory data to discriminate between those mechanisms. Here, we present the results of forced‐oscillation experiments in a deformation‐DIA apparatus at confining pressures of 3–7 GPa and temperatures of 298–1370 K. Our experiments tested the viscoelastic response of polycrystalline olivine—the main constituent of the upper mantle—at stress amplitudes from 70 to 2,800 MPa. Mechanical data are complemented by microstructural analyses of grain size, crystallographic preferred orientation, and dislocation density. We observe amplitude‐ and frequency‐dependent attenuation and modulus relaxation and find that numerical solutions of the backstress model match our results well. Therefore, we argue that interactions among dislocations, rather than intergranular processes (e.g., plastic anisotropy or grain boundary sliding), control the viscoelastic behavior of polycrystalline olivine in our experiments. In addition, we present a linearized version of the constitutive equations of the backstress model and extrapolate it to conditions typical of seismic‐wave propagation in the upper mantle. Our extrapolation demonstrates that the backstress model can explain the magnitude of seismic‐wave attenuation in the upper mantle, although some modification is required to explain the weak frequency dependence of attenuation observed in nature and in previous experimental work. 
    more » « less