skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The impact of the crust equation of state on the analysis of GW170817
Abstract The detection of GW170817, the first neutron star-neutron star merger observed by Advanced LIGO and Virgo, and its following analyses represent the first contributions of gravitational wave data to understanding dense matter. Parameterizing the high density section of the equation of state of both neutron stars through spectral decomposition, and imposing a lower limit on the maximum mass value, led to an estimate of the stars’ radii ofkm andkm (Abbottet al2018Phys. Rev. Lett.121161101). These values do not, however, take into account any uncertainty owed to the choice of the crust low-density equation of state, which was fixed to reproduce the SLy equation of state model (Douchin and Haensel 2001Astron. Astrophys.380151). We here re-analyze GW170817 data and establish that different crust models do not strongly impact the mass or tidal deformability of a neutron star—it is impossible to distinguish between low-density models with gravitational wave analysis. However, the crust does have an effect on inferred radius. We predict the systematic error due to this effect using neutron star structure equations, and compare the prediction to results from full parameter estimation runs. For GW170817, this systematic error affects the radius estimate by 0.3 km, approximatelyof the neutron stars’ radii.  more » « less
Award ID(s):
1806962
PAR ID:
10303213
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
37
Issue:
2
ISSN:
0264-9381
Page Range / eLocation ID:
Article No. 025008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We demonstrate how to quantify the frequency-domain amplitude and phase accuracy of waveform models, δ A andδφ, in a form that could be marginalized over in gravitational-wave inference using techniques currently applied for quantifying calibration uncertainty. For concreteness, waveform uncertainties affecting neutron-star inspiral measurements are considered, and post-hoc error estimates from a variety of waveform models are made by comparing time-domain and frequency-domain analytic models with multiple-resolution numerical simulations. These waveform uncertainty estimates can be compared to GW170817 calibration envelopes or to Advanced LIGO and Virgo calibration goals. Signal-specific calibration and waveform uncertainties are compared to statistical fluctuations in gravitational-wave observatories, giving frequency-dependent modeling requirements for detectors such as Advanced LIGO Plus, Cosmic Explorer, or Einstein Telescope. Finally, the distribution of waveform error for the GW170817 posterior is computed from tidal models and compared to the constraints onδφor δ A from GWTC-1 by Edelmanet al.In general,δφand δ A can also be interpreted in terms of unmodeled astrophysical energy transfer within or from the source system. 
    more » « less
  2. An advanced LIGO and Virgo’s third observing run brought another binary neutron star merger (BNS) and the first neutron-star black hole mergers. While no confirmed kilonovae were identified in conjunction with any of these events, continued improvements of analyses surrounding GW170817 allow us to project constraints on the Hubble Constant (H0), the Galactic enrichment fromr-process nucleosynthesis, and ultra-dense matter possible from forthcoming events. Here, we describe the expected constraints based on the latest expected event rates from the international gravitational-wave network and analyses of GW170817. We show the expected detection rate of gravitational waves and their counterparts, as well as how sensitive potential constraints are to the observed numbers of counterparts. We intend this analysis as support for the community when creating scientifically driven electromagnetic follow-up proposals. During the next observing run O4, we predict an annual detection rate of electromagnetic counterparts from BNS of 0.43 0.26 + 0.58 ( 1.97 1.2 + 2.68 ) for the Zwicky Transient Facility (Rubin Observatory). 
    more » « less
  3. Abstract We present the stellar population properties of 69 short gamma-ray burst (GRB) host galaxies, representing the largest uniformly modeled sample to date. Using theProspectorstellar population inference code, we jointly fit photometry and/or spectroscopy of each host galaxy. We find a population median redshift of z = 0.64 0.32 + 0.83 (68% confidence), including nine photometric redshifts atz≳ 1. We further find a median mass-weighted age oftm= 0.8 0.53 + 2.71 Gyr, stellar mass of log(M*/M) = 9.69 0.65 + 0.75 , star formation rate of SFR = 1.44 1.35 + 9.37 Myr−1, stellar metallicity of log(Z*/Z) = 0.38 0.42 + 0.44 , and dust attenuation of A V = 0.43 0.36 + 0.85 mag (68% confidence). Overall, the majority of short GRB hosts are star-forming (≈84%), with small fractions that are either transitioning (≈6%) or quiescent (≈10%); however, we observe a much larger fraction (≈40%) of quiescent and transitioning hosts atz≲ 0.25, commensurate with galaxy evolution. We find that short GRB hosts populate the star-forming main sequence of normal field galaxies, but do not include as many high-mass galaxies as the general galaxy population, implying that their binary neutron star (BNS) merger progenitors are dependent on a combination of host star formation and stellar mass. The distribution of ages and redshifts implies a broad delay-time distribution, with a fast-merging channel atz> 1 and a decreased neutron star binary formation efficiency from high to low redshifts. If short GRB hosts are representative of BNS merger hosts within the horizon of current gravitational wave detectors, these results can inform future searches for electromagnetic counterparts. All of the data and modeling products are available on the Broadband Repository for Investigating Gamma-ray burst Host Traits website. 
    more » « less
  4. Abstract We identify member stars of more than 90 open clusters in the LAMOST survey. With the method of Fang et al., the chromospheric activity (CA) indices,for 1091 member stars in 82 open clusters andfor 1118 member stars in 83 open clusters, are calculated. The relations between the average,in each open cluster and its age are investigated in differentTeffand [Fe/H] ranges. We find that CA starts to decrease slowly from logt = 6.70 to logt = 8.50, and then decreases rapidly until logt = 9.53. The trend becomes clearer for cooler stars. The quadratic functions between logR′ and logtwith 4000 K  < Teff < 5500 K are constructed, which can be used to roughly estimate ages of field stars with accuracy about 40% forand 60% for. 
    more » « less
  5. Abstract We develop a Newtonian model of a deep tidal disruption event (TDE), for which the pericenter distance of the star,rp, is well within the tidal radius of the black hole,rt, i.e., whenβ≡rt/rp≫ 1. We find that shocks form forβ≳ 3, but they are weak (with Mach numbers ∼1) for allβ, and that they reach the center of the star prior to the time of maximum adiabatic compression forβ≳ 10. The maximum density and temperature reached during the TDE follow much shallower relations withβthan the previously predicted ρ max β 3 and T max β 2 scalings. Belowβ≃ 10, this shallower dependence occurs because the pressure gradient is dynamically significant before the pressure is comparable to the ram pressure of the free-falling gas, while aboveβ≃ 10, we find that shocks prematurely halt the compression and yield the scalings ρ max β 1.62 and T max β 1.12 . We find excellent agreement between our results and high-resolution simulations. Our results demonstrate that, in the Newtonian limit, the compression experienced by the star is completely independent of the mass of the black hole. We discuss our results in the context of existing (affine) models, polytropic versus non-polytropic stars, and general relativistic effects, which become important when the pericenter of the star nears the direct capture radius, atβ∼ 12.5 (2.7) for a solar-like star disrupted by a 106M(107M) supermassive black hole. 
    more » « less