skip to main content

Title: The impact of the crust equation of state on the analysis of GW170817

The detection of GW170817, the first neutron star-neutron star merger observed by Advanced LIGO and Virgo, and its following analyses represent the first contributions of gravitational wave data to understanding dense matter. Parameterizing the high density section of the equation of state of both neutron stars through spectral decomposition, and imposing a lower limit on the maximum mass value, led to an estimate of the stars’ radii ofkm andkm (Abbottet al2018Phys. Rev. Lett.121161101). These values do not, however, take into account any uncertainty owed to the choice of the crust low-density equation of state, which was fixed to reproduce the SLy equation of state model (Douchin and Haensel 2001Astron. Astrophys.380151). We here re-analyze GW170817 data and establish that different crust models do not strongly impact the mass or tidal deformability of a neutron star—it is impossible to distinguish between low-density models with gravitational wave analysis. However, the crust does have an effect on inferred radius. We predict the systematic error due to this effect using neutron star structure equations, and compare the prediction to results from full parameter estimation runs. For GW170817, this systematic error affects the radius estimate by 0.3 km, approximatelyof more » the neutron stars’ radii.

« less
; ;
Award ID(s):
Publication Date:
Journal Name:
Classical and Quantum Gravity
Page Range or eLocation-ID:
Article No. 025008
IOP Publishing
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The waveform of a compact binary coalescence is predicted by general relativity. It is therefore possible to directly constrain the response of a gravitational-wave (GW) detector by analyzing a signal’s observed amplitude and phase evolution as a function of frequency. GW signals alone constrain the relative amplitude and phase between different frequencies within the same detector and between different detectors. Furthermore, if the source’s distance and inclination can be determined independently, for example from an electromagnetic (EM) counterpart, one can calibrate the absolute amplitude response of the detector network. We analyze GW170817’s ability to calibrate the LIGO/Virgo detectors, findingmore »a relative amplitude calibration precision of approximately20% and relative phase precision of(uncertainty) between the LIGO Hanford and Livingston detectors. Incorporating additional information about the distance and inclination of the source from EM observations, the relative amplitude of the LIGO detectors can be tightened to  ∼%. Including EM observations also constrains the absolute amplitude precision to similar levels. We investigate the ability of future events to improve astronomical calibration. By simulating the cumulative uncertainties from an ensemble of detections, we find that with several hundred events with EM counterparts, or several thousand events without counterparts, we reach percent-level astronomical calibration. This corresponds to  ∼5–10 years of operation at advanced LIGO and Virgo design sensitivity. It is to be emphasized that directin situmeasurements of detector calibration provide significantly higher precision than astronomical sources, and already constrain the calibration to a few percent in amplitude and a few degrees in phase. In this sense, our astronomical calibrators only corroborate existing calibration measurements. Nonetheless, it is remarkable that we are able to use an astronomical GW source to characterize properties of a terrestrial GW instrument, and astrophysical calibration may become an important corroboration of existing calibration methods, providing a completely independent constraint of potential systematics.

    « less
  2. Abstract

    We present measurements of [Fe/H] and [α/Fe] for 128 individual red giant branch stars (RGB) in the stellar halo of M31, including its Giant Stellar Stream (GSS), obtained using spectral synthesis of low- and medium-resolution Keck/DEIMOS spectroscopy (and 6000, respectively). We observed four fields in M31's stellar halo (at projected radii of 9, 18, 23, and 31 kpc), as well as two fields in the GSS (at 33 kpc). In combination with existing literature measurements, we have increased the sample size of [Fe/H] and [α/Fe] measurements from 101 to a total of 229 individual M31 RGB stars.more »From this sample, we investigate the chemical abundance properties of M31's inner halo, findingand. Between 8 and 34 kpc, the inner halo has a steep [Fe/H] gradient (−0.025 ± 0.002 dex kpc−1) and negligible [α/Fe] gradient, where substructure in the inner halo is systematically more metal-rich than the smooth component of the halo at a given projected distance. Although the chemical abundances of the inner stellar halo are largely inconsistent with that of present-day dwarf spheroidal (dSph) satellite galaxies of M31, we identified 22 RGB stars kinematically associated with the smooth component of the stellar halo that have chemical abundance patterns similar to M31 dSphs. We discuss formation scenarios for M31's halo, concluding that these dSph-like stars may have been accreted from galaxies of similar stellar mass and star formation history, or of higher stellar mass and similar star formation efficiency.

    « less
  3. Abstract

    We construct, for the first time, the time-domain gravitational wave strain waveform from the collapse of a strongly gravitating Abelian Higgs cosmic string loop in full general relativity. We show that the strain exhibits a large memory effect during merger, ending with a burst and the characteristic ringdown as a black hole is formed. Furthermore, we investigate the waveform and energy emitted as a function of string width, loop radius and string tension. We find that the mass normalized gravitational wave energy displays a strong dependence on the inverse of the string tensionEGW/M0∝ 1/, withEGW/M0O(1more »stretchy='false'>)%at the percent level, for the regime where≳ 10−3. Conversely, we show that the efficiency is only weakly dependent on the initial string width and initial loop radii. Using these results, we argue that gravitational wave production is dominated by kinematical instead of geometrical considerations.

    « less
  4. We combine equation of state of dense matter up to twice nuclear saturation density (nsat = 0.16 fm−3 ) obtained using chiral effective field theory (χEFT), and recent observations of neutron stars to gain insights about the high-density matter encountered in their cores. A key element in our study is the recent Bayesian analysis of correlated EFT truncation errors based on order-byorder calculations up to next-to-next-to-next-to-leading order in the χEFT expansion. We refine the bounds on the maximum mass imposed by causality at high densities, and provide stringent limits on the maximum and minimum radii of ∼ 1.4 M andmore »∼ 2.0 M stars. Including χEFT predictions from nsat to 2 nsat reduces the permitted ranges of the radius of a 1.4 M star, R1.4, by ∼ 3.5 km. If observations indicate R1.4 < 11.2 km, our study implies that either the squared speed of sound c 2 s > 1/2 for densities above 2 nsat, or that χEFT breaks down below 2 nsat. We also comment on the nature of the secondary compact object in GW190814 with mass ' 2.6 M , and discuss the implications of massive neutron stars > 2.1 M (2.6 M ) in future radio and gravitational-wave searches. Some form of strongly interacting matter with c 2 s > 0.35 (0.55) must be realized in the cores of such massive neutron stars. In the absence of phase transitions below 2 nsat, the small tidal deformability inferred from GW170817 lends support for the relatively small pressure predicted by χEFT for the baryon density nB in the range 1−2 nsat. Together they imply that the rapid stiffening required to support a high maximum mass should occur only when nB & 1.5 − 1.8 nsat.« less
  5. Abstract

    The best upper limit for the electron electric dipole moment was recently set by the ACME collaboration. This experiment measures an electron spin-precession in a cold beam of ThO molecules in their metastableH(3Δ1)state. Improvement in the statistical and systematic uncertainties is possible with more efficient use of molecules from the source and better magnetometry in the experiment, respectively. Here, we report measurements of several relevant properties of the long-livedQ(3Δ2)state of ThO, and show that this state is a very useful resource for both these purposes.more »TheQstate lifetime is long enough that its decay during the time of flight in the ACME beam experiment is negligible. The large electric dipole moment measured for theQstate, giving rise to a large linear Stark shift, is ideal for an electrostatic lens that increases the fraction of molecules detected downstream. The measured magnetic moment of theQstate is also large enough to be used as a sensitive co-magnetometer in ACME. Finally, we show that theQstate has a large transition dipole moment to theC(1Π1)state, which allows for efficient population transfer between the ground stateX(1Σ+)and theQstate viaXCQStimulated Raman Adiabatic Passage (STIRAP). We demonstrate 90 % STIRAP transfer efficiency. In the course of these measurements, we also determine the magnetic moment ofCstate, theXCtransition dipole moment, and branching ratios of decays from theCstate.

    « less