skip to main content


Title: How Tryptophan Oxidation Arises by “Dark” Photoreactions from Chemiexcited Triplet Acetone
Abstract

Dioxetane intermediates readily decompose to chemiluminescent triplet carbonyls, giving rise to what has been paradoxically called photochemistry in the dark. In this issue ofPhotochemistry and Photobiology, Bechara et al. report on mechanistic advances in such a reaction. With the use of horseradish peroxidase for isobutyraldehyde‐derived triplet acetone, light emission from acetone and singlet oxygen can be quenched. The experiments reveal that the reaction depends on oxygen and the amino acid. The analysis reveals that free tryptophan is a target of this form of “carbonyl stress,” with the efficient formation of mono‐, bi‐ and tricyclic compounds (N‐formylkynurenine, indoline, 1λ2‐indole and 3H‐indoles).

 
more » « less
Award ID(s):
1856765
NSF-PAR ID:
10452459
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Photochemistry and Photobiology
Volume:
97
Issue:
2
ISSN:
0031-8655
Page Range / eLocation ID:
p. 456-459
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Little attention has been focused on diradical and zwitterionic photoperoxides formed from nitrosamine compounds. Here, an attempt is made to probe the electronic character of the nitrooxide intermediate formed in photochemical reactions with triplet oxygen (3O2). Theoretical studies have been conducted to screenpara‐substituted phenyl nitrosamines. In particular, we find that electron‐withdrawing substituents produce low‐lying triplet nitrooxide diradicals. A clear electronic dependence in theS0T1andS0S1energy gaps of nitrooxides was found using Hammett plots. Computed geometries show a twisted diradical triplet nitrooxide moiety, which contrasts to the nearly flat singlet zwitterionic ground state nitrooxide moiety; analyses of charges (natural bond order), molecular orbitals (HOMO/LUMO) and spin densities enable these assignments. Calculations predict the former triplet species is photogenerated initially from nitrosamine with O2. The conversion of the triplet nitrooxide diradical to the singlet ground state is an example where longer‐lived zwitterionic nitrooxide structures become possible. The reaction mechanism is consistent with a zwitterionic ground state nitrooxide playing an important role in the bimolecular oxygen‐transfer reaction with phosphine and phosphite trapping agents as has been observed experimentally.

     
    more » « less
  2. Abstract

    We investigated the effect of the cation‐π interaction on the susceptibility of a tryptophan model system toward interaction with singlet oxygen, that is, type II photooxidation. The model system consists of two indole units linked to a lariat crown ether to measure the total rate of removal of singlet oxygen by the indole units in the presence of sodium cations (i.e. indole units subject to a cation‐π interaction) and in the absence of this interaction. We found that the cation‐π interaction significantly decreases the total rate of removal of singlet oxygen (kT) for the model system, that is, (kT = 2.4 ± 0.2) × 108 m−1 s−1without sodium cationvs(kT = 6.9 ± 0.9) × 107 m−1 s−1upon complexation of sodium cation to the crown ether. Furthermore, we found that the indole moieties undergo type I photooxidation processes with triplet excited methylene blue; this effect is also inhibited by the cation‐π interaction. The chemical rate of reaction of the indole groups with singlet oxygen is also slower upon complexation of sodium cation in our model system, although we were unable to obtain an exact ratio due to differences of the chemical reaction rates of the two indole moieties.

     
    more » « less
  3. Abstract

    Sulfoximines are popular scaffolds in drug discovery due to their hydrogen bonding properties and chemical stability. In recent years, the role of reactive intermediates such as nitrenes has been studied in the synthesis and degradation of sulfoximines. In this work, the photochemistry ofN‐phenyl dibenzothiophene sulfoximine [5‐(phenylimino)‐5H‐5λ4‐dibenzo[b,d]thiopheneS‐oxide] was analyzed. The structure resembles a combination ofN‐phenyl iminodibenzothiophene and dibenzothiopheneS‐oxide, which generate nitrene and O(3P) upon UV‐A irradiation, respectively. The photochemistry ofN‐phenyl dibenzothiophene sulfoximine was explored by monitoring the formation of azobenzene, a photoproduct of triplet nitrene, using direct irradiation and sensitized experiments. The reactivity profile was further studied through direct irradiation experiments in the presence of diethylamine (DEA) as a nucleophile. The studies demonstrated thatN‐phenyl dibenzothiophene sulfoximine underwent S–N photocleavage to release singlet phenyl nitrene which formed a mixture of azepines in the presence of DEA and generated moderate amounts of azobenzene in the absence of DEA to indicate formation of triplet phenyl nitrene.

     
    more » « less
  4. ABSTRACT

    Criegee intermediates make up a class of molecules that are of significant atmospheric importance. Understanding their electronically excited states guides experimental detection and provides insight into whether solar photolysis plays a role in their removal from the troposphere. The latter is particularly important for large and functionalized Criegee intermediates. In this study, the excited state chemistry of two small Criegee intermediates, formaldehyde oxide (CH2OO) and acetaldehyde oxide (CH3CHOO), was modeled to compare their specific dynamics and mechanisms following excitation to the bright ππ* state and to assess the involvement of triplet states to the excited state decay process. Following excitation to the bright ππ* state, the photoexcited population exclusively evolves to form oxygen plus aldehyde products without the involvement of triplet states. This occurs despite the presence of a more thermodynamically stable triplet path and several singlet/triplet energy crossings at the Franck‐Condon geometry and contrasts with the photodynamics of related systems such as acetaldehyde and acetone. This work sets the foundations to study Criegee intermediates with greater molecular complexity, wherein a bathochromic shift in the electron absorption profiles may ensure greater removalviasolar photolysis.

     
    more » « less
  5. Abstract

    Not long ago, the occurrence of quantum mechanical tunneling (QMT) chemistry involving atoms heavier than hydrogen was considered unreasonable. Contributing to the shift of this paradigm, we present here the discovery of a new and distinct heavy‐atom QMT reaction. Triplet syn‐2‐formyl‐3‐fluorophenylnitrene, generated in argon matrices by UV‐irradiation of an azide precursor, was found to spontaneously cyclize to singlet 4‐fluoro‐2,1‐benzisoxazole. Monitoring the transformation by IR spectroscopy, temperature‐independent rate constants (k≈1.4×10−3 s−1; half‐life of ≈8 min) were measured from 10 to 20 K. Computational estimated rate constants are in fair agreement with experimental values, providing evidence for a mechanism involving heavy‐atom QMT through crossing triplet to singlet potential energy surfaces. Moreover, the heavy‐atom QMT takes place with considerable displacement of the oxygen atom, which establishes a new limit for the heavier atom involved in a QMT reaction in cryogenic matrices.

     
    more » « less