skip to main content

Search for: All records

Award ID contains: 1856765

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    Naturally, endogenous porphyrins can provide sensitized disinfection power, and to photobiologists' delight, violet‐blue light has potential virtues, but progress is needed before violet‐blue light treatment can be used for microbe treatment of blood plasma, and yet safeguard against protein photooxidation. A report by Macleanet al. in this issue ofPhotochemistry & Photobiologyon microbe reduction in blood plasma showing negligible competing protein photooxidation may bring that goal a step closer.

    more » « less
  2. Abstract

    The sensitized photooxidation ofortho‐prenyl phenol is described with evidence that solvent aproticity favors the formation of a dihydrobenzofuran [2‐(prop‐1‐en‐2‐yl)‐2,3‐dihydrobenzofuran], a moiety commonly found in natural products. Benzene solvent increased the total quenching rate constant (kT) of singlet oxygen with prenyl phenol by ~10‐fold compared to methanol. A mechanism is proposed with preferential addition of singlet oxygen to prenyl site due to hydrogen bonding with the phenol OH group, which causes a divergence away from the singlet oxygen ‘ene’ reaction toward the dihydrobenzofuran as the major product. The reaction is a mixed photooxidized system since an epoxide arises by a type I sensitized photooxidation.

    more » « less
  3. Abstract

    This article is a highlight of the paper by Isor et al. in this issue ofPhotochemistry and Photobiology. It describes the photolysis of a dibenzothiophene sulfoximine (bearingN‐phenyl imino andS‐oxide groups) to produce two reactive intermediates in tandem. The sulfoximine undergoes a S–N and S–O photocleavage to release phenyl nitrene and atomic oxygen [O(3P)]. The phenyl nitrene dimerizes to azobenzene or is trapped by diethylamine to reach an azepine. From there, atomic oxygen arises in a secondary photolysis of dibenzothiophene sulfoxide. A computational analysis also reveals that the S–N bond is labile for initial nitrene release, with the secondary release of atomic oxygen by S–O cleavage. Whether future sulfoximine scaffolds can produce the reverse order release of O(3P) then nitrene, or release both simultaneously, is yet to be established. Nonetheless, molecules with dual‐intermediate release, such as coupled photoaffinity labeling and cellular oxidation, are worth pursuing.

    more » « less
  4. Abstract

    Dioxetane intermediates readily decompose to chemiluminescent triplet carbonyls, giving rise to what has been paradoxically called photochemistry in the dark. In this issue ofPhotochemistry and Photobiology, Bechara et al. report on mechanistic advances in such a reaction. With the use of horseradish peroxidase for isobutyraldehyde‐derived triplet acetone, light emission from acetone and singlet oxygen can be quenched. The experiments reveal that the reaction depends on oxygen and the amino acid. The analysis reveals that free tryptophan is a target of this form of “carbonyl stress,” with the efficient formation of mono‐, bi‐ and tricyclic compounds (N‐formylkynurenine, indoline, 1λ2‐indole and 3H‐indoles).

    more » « less
  5. Abstract

    Progress is needed before explicit photodynamic therapy (PDT) dosimetry can treat peritoneal carcinomatosis and yet spare all healthy tissue. A report by Cengel et al. in this issue ofPhotochemistry & Photobiologyon tissue evaluation in a canine model may bring that goal a step closer and may even bedogma‐changing.

    more » « less
  6. Abstract

    Compounds have been devised whose supportive actions make them important adjuvants in the priming of photosensitization to selectively target cancer cells. Here, we highlight the paper by Maytin and Hasan in this issue ofPhotochemistry & Photobiology, which describes adjuvants methotrexate, 5‐fluorouracil, vitamin D and its analogs leading to improved photodynamic therapy outcome. These small molecule adjuvants act by different mechanisms to enhance the cytotoxicity in tumor cells and the therapeutic effect in cancers. These findings add to the list of strategies for enhancement of photodynamic therapy.

    more » « less
  7. Abstract

    With interests in alkoxy radical formation on natural and artificial surfaces, a physical‐organic study was carried out with a Hammett series of triaryl phosphites (p‐MeO, H,p‐F, andp‐Cl) to trap adsorbed alkoxy radicals on silica nanoparticles. A mechanism which involves PhC (Me)2O• and EtO• trapping in a cumylethyl peroxide sensitized homolysis reaction is consistent with the results. Thep‐F phosphite was able to indirectly monitor the alkoxy radical formation, and31P NMR readily enabled this exploration, but other phosphites of the series such as thep‐MeO phosphite were limited by hydrolysis reactions catalyzed by surface silanol groups. Fluorinated silica nanoparticles helped to suppress the hydrolysis reaction although adventitious water also plays a role in hindering efficient capture of the alkoxy radicals by the phosphite traps.

    more » « less
  8. Abstract

    A unique approach is used to relate the HOMO‐LUMO energy difference to the difference between the ionization potential (IP) and electron affinity (EA) to assist in deducing not only the colors, but also chromophores in elemental nonmetals. Our analysis focuses on compounds with lone pair electrons and σ electrons, namely X2(X = F, Cl, Br, I), S8and P4. For the dihalogens, the [IP – EA] energies are found to be: F2(12.58 eV), Cl2(8.98 eV), Br2(7.90 eV), I2(6.78 eV). We suggest that theinterahalogen X–X bond itself is the chromophore for these dihalogens, in which the light absorbed by the F2, Cl2, Br2, I2leads to longer wavelengths in the visible by a π → σ* transition. Trace impurities are a likely case of cyclic S8which contains amounts of selenium leading to a yellow color, where the [IP – EA] energy of S8is found to be 7.02 eV. Elemental P4with an [IP – EA] energy of 9.09 eV contains a tetrahedral and σ aromatic structure. In future work, refinement of the analysis will be required for compounds with π electrons and σ electrons, such as polycyclic aromatic hydrocarbons (PAHs).

    more » « less
  9. Abstract

    Toluidine blue O (TBO) is a water‐soluble photosensitizer that has been used in photodynamic antimicrobial and anticancer treatments, but suffers from limited solubility in hydrophobic media. In an effort to incrementally increase TBO’s hydrophobicity, we describe the synthesis of hexanoic (TBOC6) and myristic (TBOC14) fatty acid derivatives of TBO formed in low to moderate percent yields by condensation with the free amine site. Covalently linking 6 and 14 carbon chains led to modifications of not only TBO’s solubility, but also its photophysical and photochemical properties. TBOC6 and TBOC14 derivatives were more soluble in organic solvents and showed hypsochromic shifts in their absorption and emission bands. The solubility in phosphate buffer solution was low for both TBOC6 and TBOC14, but unexpectedly slightly greater in the latter. Both TBOC6 and TBOC14 showed decreased triplet excited‐state lifetimes and singlet oxygen quantum yields in acetonitrile, which was attributed to heightened aggregation of these conjugates particularly at high concentrations due to the hydrophobic “tails.” While in diluted aqueous buffer solution, indirect measurements showed similar efficiency in singlet oxygen generation for TBOC14 compared to TBO. This work demonstrates a facile synthesis of fatty acid TBO derivatives leading to amphiphilic compounds with a delocalized cationic “head” group and hydrophobic “tails” for potential to accumulate into biological membranes or membrane/aqueous interfaces in PDT applications.

    more » « less
  10. Abstract

    Ru(II) complexes were synthesized with π‐expanding (phenyl, fluorenyl, phenanthrenyl, naphthalen‐1‐yl, naphthalene‐2‐yl, anthryl and pyrenyl groups) attached at a 1H‐imidazo[4,5‐f][1,10]phenanthroline ligand and 4,4′‐dimethyl‐2,2′‐bipyridine (4,4′‐dmb) coligands. These Ru(II) complexes were characterized by 1D and 2D NMR, and mass spectroscopy, and studied for visible light and dark toxicity to human malignant melanoma SK‐MEL‐28 cells. In the SK‐MEL‐28 cells, the Ru(II) complexes are highly phototoxic (EC50 = 0.2–0.5 µm) and have low dark toxicity (EC50 = 58–230 µm). The highest phototherapeutic index (PI) of the series was found with the Ru(II) complex bearing the 2‐(pyren‐1‐yl)‐1H‐imidazo[4,5‐f][1,10]phenanthroline ligand. This high PI is in part attributed to the π‐rich character added by the pyrenyl group, and a possible low‐lying and longer‐lived3IL state due to equilibration with the3MLCT state. While this pyrenyl Ru(II) complex possessed a relatively high quantum yield for singlet oxygen formation (Φ = 0.84), contributions from type‐I processes (oxygen radicals and radical ions) are competitive with the type‐II (1O2) process based on effects of added sodium azide and solvent deuteration.

    more » « less