skip to main content


Title: Detection Technologies for Reactive Oxygen Species: Fluorescence and Electrochemical Methods and Their Applications
Reactive oxygen species (ROS) have been found in plants, mammals, and natural environmental processes. The presence of ROS in mammals has been linked to the development of severe diseases, such as diabetes, cancer, tumors, and several neurodegenerative conditions. The most common ROS involved in human health are superoxide (O2•−), hydrogen peroxide (H2O2), and hydroxyl radicals (•OH). Organic and inorganic molecules have been integrated with various methods to detect and monitor ROS for understanding the effect of their presence and concentration on diseases caused by oxidative stress. Among several techniques, fluorescence and electrochemical methods have been recently developed and employed for the detection of ROS. This literature review intends to critically discuss the development of these techniques to date, as well as their application for in vitro and in vivo ROS detection regarding free-radical-related diseases. Moreover, important insights into and further steps for using fluorescence and electrochemical methods in the detection of ROS are presented.  more » « less
Award ID(s):
1817294
NSF-PAR ID:
10230828
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Biosensors
Volume:
11
Issue:
2
ISSN:
2079-6374
Page Range / eLocation ID:
30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The enantiomers of chiral amino acids play versatile roles in biological systems including humans. They are also very useful in the asymmetric synthesis of diverse chiral organic compounds. Therefore, identifying a specific amino acid and distinguishing it from its enantiomer are of great importance. Although significant progress has been made in the development of fluorescent probes for amino acids, most of them are not capable of conducting simultaneous chemoselective and enantioselective detection of a specific amino acid enantiomer. In this article, several fluorescent probes have been designed and synthesized for chemoselective as well as enantioselective recognition of certain amino acid enantiomers. ( S )-1 shows greatly enhanced fluorescence in the presence of l -glutamic acid and l -aspartic acid, but produces no or little fluorescence response toward their opposite enantiomers and other amino acids. ( R )-4 in combination with Zn 2+ shows greatly enhanced fluorescence in the presence of l -serine. ( S )-6 is designed for the selective recognition of histidine. Micelles made of an amphiphilic diblock copolymer are used to encapsulate the water-insoluble compound ( S )-8 which shows chemoselective as well as enantioselective fluorescence enhancement with l -lysine in the presence of Zn 2+ in aqueous solution. The same micelles are also used to encapsulate several ( S )-1,1′-binaphthyl-based monoaldehydes ( S )-10 for the chemoselective and enantioselective fluorescence recognition of l -tryptophan in the presence of Zn 2+ in aqueous solution. These findings have demonstrated that highly selective fluorescence identification of a specific amino acid enantiomer can be achieved by incorporating certain functional groups at the designated locations of the 1,1′-binaphthyls. The binaphthyl core structure of these probes provides both a chirality source and highly tunable fluorescence properties. Matching the structure and chirality of these probes with those of the specific amino acid enantiomers can generate structurally rigid reaction products and give rise to greatly enhanced fluorescence. The strategies of this work can be further expanded to develop fluorescent probes for the specific identification of many amino acids of interest. This should facilitate the analysis of chiral amino acids in various applications. The outlook of this research and its comparison with other methods are also discussed. 
    more » « less
  2. null (Ed.)
    The brain is a complex network that accounts for only 5% of human mass but consumes 20% of our energy. Uncovering the mysteries of the brain’s functions in motion, memory, learning, behavior, and mental health remains a hot but challenging topic. Neurochemicals in the brain, such as neurotransmitters, neuromodulators, gliotransmitters, hormones, and metabolism substrates and products, play vital roles in mediating and modulating normal brain function, and their abnormal release or imbalanced concentrations can cause various diseases, such as epilepsy, Alzheimer’s disease, and Parkinson’s disease. A wide range of techniques have been used to probe the concentrations of neurochemicals under normal, stimulated, diseased, and drug-induced conditions in order to understand the neurochemistry of drug mechanisms and develop diagnostic tools or therapies. Recent advancements in detection methods, device fabrication, and new materials have resulted in the development of neurochemical sensors with improved performance. However, direct in vivo measurements require a robust sensor that is highly sensitive and selective with minimal fouling and reduced inflammatory foreign body responses. Here, we review recent advances in neurochemical sensor development for in vivo studies, with a focus on electrochemical and optical probes. Other alternative methods are also compared. We discuss in detail the in vivo challenges for these methods and provide an outlook for future directions. 
    more » « less
  3. null (Ed.)
    It is well known that an excess of hydroxyl radicals (˙OH) in the human body is responsible for oxidative stress-related diseases. An understanding of the relationship between the concentration of ˙OH and those diseases could contribute to better diagnosis and prevention. Here we present a supersensitive nanosensor integrated with an electrochemical method to measure the concentration of ˙OH in vitro. The electrochemical sensor consists of a composite comprised of ultrasmall cerium oxide nanoclusters (<2 nm) grafted to a highly conductive carbon deposited on a screen-printed carbon electrode (SPCE). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to analyze the interaction between cerium oxide nanoclusters and ˙OH. The CV results demonstrated that this electrochemical sensor had the capacity of detecting ˙OH with a high degree of accuracy and selectivity, achieving a consistent performance. Additionally, EIS results confirmed that our electrochemical sensor was able to differentiate ˙OH from hydrogen peroxide (H 2 O 2 ), which is another common reactive oxygen species (ROS) found in the human body. The limit of detection (LOD) observed with this electrochemical sensor was of 0.6 μM. Furthermore, this nanosized cerium oxide-based electrochemical sensor successfully detected in vitro the presence of ˙OH in preosteoblast cells from newborn mouse bone tissue. The supersensitive electrochemical sensor is expected to be beneficially used in multiple applications, including medical diagnosis, fuel–cell technology, and food and cosmetic industries. 
    more » « less
  4. Abstract

    Visualization of gene products inCaenorhabditis eleganshas provided insights into the molecular and biological functions of many novel genes in their native contexts. Single‐molecule fluorescencein situhybridization (smFISH) and immunofluorescence (IF) enable the visualization of the abundance and localization of mRNAs and proteins, respectively, allowing researchers to ultimately elucidate the localization, dynamics, and functions of the corresponding genes. Whereas both smFISH and immunofluorescence have been foundational techniques in molecular biology, each protocol poses challenges for use in theC. elegansembryo. smFISH protocols suffer from high initial costs and can photobleach rapidly, and immunofluorescence requires technically challenging permeabilization steps and slide preparation. Most importantly, published smFISH and IF protocols have predominantly been mutually exclusive, preventing the exploration of relationships between an mRNA and a relevant protein in the same sample. Here, we describe protocols to perform immunofluorescence and smFISH inC. elegansembryos either in sequence or simultaneously. We also outline the steps to perform smFISH or immunofluorescence alone, including several improvements and optimizations to existing approaches. These protocols feature improved fixation and permeabilization steps to preserve cellular morphology while maintaining probe and antibody accessibility in the embryo, a streamlined, in‐tube approach for antibody staining that negates freeze‐cracking, a validated method to perform the cost‐reducing single molecule inexpensive FISH (smiFISH) adaptation, slide preparation using empirically determined optimal antifade products, and straightforward quantification and data analysis methods. Finally, we discuss tricks and tips to help the reader optimize and troubleshoot individual steps in each protocol. Together, these protocols simplify existing workflows for single‐molecule RNA and protein detection. Moreover, simultaneous, high‐resolution imaging of proteins and RNAs of interest will permit analysis, quantification, and comparison of protein and RNA distributions, furthering our understanding of the relationship between RNAs and their protein products or cellular markers in early development. © 2021 Wiley Periodicals LLC.

    Basic Protocol 1: Sequential immunofluorescence and single‐molecule fluorescencein situhybridization

    Alternate Protocol: Abbreviated protocol for simultaneous immunofluorescence and single‐molecule fluorescencein situhybridization

    Basic Protocol 2: Simplified immunofluorescence inC. elegansembryos

    Basic Protocol 3: Single‐molecule fluorescencein situhybridization or single‐molecule inexpensive fluorescencein situhybridization

     
    more » « less
  5. Electrochemical sensors are ideally suited for the detection of reactive oxygen and nitrogen species (ROS and RNS) generated during biological processes. This review discusses the latest work in the development of electrochemical microsensors for ROS/RNS and their possible applications for monitoring oxidative stress in biological systems. The performance of recent designs of microelectrodes and electrode materials are discussed along with their functionality in preclinical models of drug efficacy, mitochondrial distress, and endothelial dysfunction. Challenges and opportunities in translating this methodology to study the pathophysiology associated with various diseases are discussed. 
    more » « less